We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00280618, .00162136) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .00731111, .0762451) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.00900869, .0246063}, {.00690744, .00836053}, {.0106247, .00911126}, ------------------------------------------------------------------------ {.00412896, .01711}, {.00833566, .026875}, {.0108571, .0274697}, ------------------------------------------------------------------------ {.0102789, .0165973}, {.00915804, .0150779}, {.00760245, .0110873}, ------------------------------------------------------------------------ {.0102761, .0158893}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0087178022 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0172184642 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.