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Degree of a variety

Let X be an affine algebraic variety of pure dimension d over algebraically-closed
field K embedded in KV.
Definition
The degree of X, deg X is the number of points in X N £ where L is a generic
codimension-d affine linear space.

deg X = #(X N L).

For radical ideal / = I(X), say deg / := deg X.

e If dim X = 0 then deg X = #(X).
e If X is a hypersurface with I(X) = (f), deg X = deg f.

e Bézout Bound: If X is a complete intersection of hypersurfaces X, ..., X:
then deg X < deg Xi - - - deg X:.



Computing degree symbolically

Definition
Forideal I C R = K[xi, ..., xn], let R, C R denote the polynomials of degree at
most n. The Hilbert function of R/l'is HF g/, : Z>o — Zx>o defined by

HFg,/(n) = dimk(R//) N Rx.

The Hilbert function HF z/,(n) is polynomial for n >> 0. This polynomial is the
Hilbert polynomial of R/I, denoted HPg,(n).

Theorem
Suppose the Hilbert polynomial of R/1(X) is

HPR/|(X)(n) = adnd + -+ ao.

Then
dim X = d,

deg X = d'ay.
(From this fact we extend the definition of deg / to non-radical ideals and ideals

over non-algebraically-closed fields.)
The Hilbert polynomial can be computed from a Grébner basis.




Varieties O(n) and SO(n)

e O(n) is the subset of GL(R") preserving the standard inner product.
e SO(n) is the subset of O(n) also preserving orientation.

Both O(n) and SO(n) are algebraic groups: both groups and algebraic varieties.
O(n) = {A € Matoxn | ATA=Id} CR”,

1 ifi=j

0 ifi#j

The equations for SO(n) are the same but adding the degree-n equation

@i18j,1 + -+ + &indj,n = { forall i <j.

det(A) = 1.
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It's convenient to work in an algebraically-closed field C. From here, take O(n) and

SO(n) to be the Zariski closures of the above real varieties in (C”Z, which does not
change the degree.



Some basic facts about O(n) and SO(n)

Fact

dimO(n) = dim SO(n) = w
Fact
O(n) is a complete intersection of w quadratics.

Fact
e SO(n) is a smooth, irreducible variety.
e O(n) has two disjoint irreducible components, each isomorphic to SO(n).




Some basic facts about O(n) and SO(n)

Fact

dimO(n) = dim SO(n) = w
Fact
O(n) is a complete intersection of w quadratics.

Fact
e SO(n) is a smooth, irreducible variety.
e O(n) has two disjoint irreducible components, each isomorphic to SO(n).

Question
What is the degree of SO(n)? (degO(n) = 2deg SO(n).)




Symbolic computation of deg SO(n)

Symbolic algorithm:

n Symbolic H.C. Monodromy Formula
2 2
3 8
4 40
5 384
6 -
7 -
8 -
9 -
Limitations:

o Grdbner basis time grows badly in number of variables, which is r°.
e We could only reach n = 5.
e For neven or odd we get only 2 data points each.



Computing degree numerically
Suppose X is a complete intersection, I(X) = (f, ..., f;) where r = codim X.
Choose ¢4, . .., ¢n_, random affine linear functionals on CV.

deg X = #V(fi, ..., fr by, ..., n_r).
Numerical algebraic geometry can count the solutions. The total degree homotopy
system is
H({t) =tF+~y(1 -G

with

o F=(fi,....f, 01 ..., 0n—t),

e G=(xX"—1,...,x¥ —1,%41 —1,...,xy — 1) where d; = deg f; (e.g.),

e v € C\ {0} chosen randomly.
We know all d; - - - d; solutions to H(0) = G. Track solutions of H(t) as t goes from
0 to 1. Count how many don’t go to cc.




Numerical computation of deg SO(n)

Homotopy continuation algorithm:
¢ Recall O(n) is a complete intersection of n(n+ 1)/2 quadratics.

e Begin with a “start system” consisting n(n + 1)/2 quadratics and n(n —1)/2
linear equations, with known solutions. E.g:

a&;—1 fori<j
aj; fori>j

e Continuously deform start system to system for O(n) N £. Track each solution.
Limitations:

o Number of paths is 2""*1/2_For n = 6 this is 22" = 2097152.
o We expect deg O(6) to be much smaller than 22'.



Mixed volume

Definition
For f € C[x1, ..., xn],
f=0CayX™ 4+ -+ Cap X*°

with a1, ..., ap € ZY and ca, # 0.
The Newton polytope of f is conv(aa, . .., ap).

BKK bound: For I(X) = (fi, ..., fv) a complete intersection and A; the Newton
polytope of f;

where MV is the mixed volume.

e The mixed volume can be much smaller than the Bézout bound.

e This suggests a more efficient homotopy start system: Polynomials with the
same Newton polytopes as (fi, . .., fx).

e MV(Ai,...,An) can be hard to compute, but we don’t need to!
e For O(n), this strategy didn’t help us.



Homotopy continuation results

Symbolic H.C. Monodromy Formula
2 2
8 8
40 40
384 384

©Ooo~NO O~ WNS

Homotopy continuation computations were performed with the
NumericalAlgebraicGeometry package for Macaulay2 and BERTINI.



Numerical monodromy computation of deg SO(n)

Monodromy algorithm:
e Start with a subset of the solutions to SO(n) N £ (perhaps just one point xo).
e Moving £ through a loop in the Grassmannian back to £ permutes the points

in SO(n) N L.
L L
X \ X /
\

/

¢ Tracking known solutions often leads to new ones.
e Repeat this process to populate all of SO(n) N L.

¢ A solution can’t leave its irreducible component, but recall SO(n) is
irreducible.



Monodromy results

n Symbolic H.C. Monodromy Formula
2 2 2 2

3 8 8 8

4 40 40 40

5 384 384 384

6 - - 4768

7 - - 111616

8 - - -

9 - - -

Monodromy computations were performed in Macaulay?2 using the code of
Duff—Hill-densen—Lee—Leykin—-Sommars.



Kazarnovskij's formula

Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an
algebraically closed field. If p : G — GL(V) is a representation with finite kernel
then,

— m!

degp(G) = W(G)|(er'e2! - - e, 1)2[ker(p)] Cv(dwvzg...d/)?dv.

where W(G) is the Weyl group, e; are Coxeter exponents, Cy is the convex hull of
the weights, and &; are the coroots.

e representation: p : SO(n) — GL(C") is the standard embedding.

e kernel: ker p is trivial.

e rank: r = n/2 or (n—1)/2 depending on n even or odd.

e dimension: m = (3).

o size of Weyl group: |W(SO(n))| = ri2~" or r12".

e Coxeter exponents: ey,...,e-=1,3,...,2r—3,r—1o0r1,3,...,2r—1.
e weights: tey,..., e

o coroots: {&1,...,d&} = {xF £ X*1<icjcr OF {xF £ X 1<icjcr U{XPH<icr.

ot



Degree formulas

Proposition (Recht—Robeva)

B (3)! 2 2y
degSO(2r) = r2r=1(r — 1)2 [ (2k — 1)12 /CV( Il ¢ X’))dv’

1<i<j<r

degSO(2r +1) = — H;(_12(2)l<!— o /C V ( T &F=x)? H(Zx;)2> av.

1<i<j<r i=1

where Cy is the cross polytope Cy = conv(+ey,...,+te) CR".




Degree formulas

Proposition (Recht—Robeva)

(2r)!
4eg 0N = R @k 1)E /CV ( IT ¢ —Xf)z) dv,

1<i<j<r
degSO(2r +1) = ,(2? )! > / [ &F-x7? lL[(zxf)2 dv.
riar Hk:1 (2k = 1)' Gy 1<i<j<r e
where Cy is the cross polytope Cy = conv(=+ey,...,+e) CR".

To evaluate these integrals:

e Cy has a standard simplices A, in each orthant, and the integrand is even in
each x;.

¢ Rewrite the integrand as a sum of monomials with identity:

IT Gr=y) =" san(@) []w" "

1<i<j<r €S i=1

r

 Monomials integrate as/ Xt xfrdx = ajl.

1
A, (r+23,‘)!:’,|;!:



Theorem

v

degSO(n) = 2" det[(zn 2r - ]>] .
n—2j -

1<ij<18]

Example
degSO(4) = 2*~ " det [% %] = 40.
degSO(5) = 2°~" det {Egg ggﬂ = 384.




Theorem

Example

onet 2n—2i —2j
degSO(n) =2 det[( n_oj >} .
1<ij<[ 3]

4 2
degSO(4) = 2*~ " det {(g) (g)] = 40.
o0 ()
6 4
degSO(5) = 2°~" det {(g) (g)} = 384.
G 6
n Symbolic H.C. Monodromy Formula
2 2 2 2 2
3 8 8 8 8
4 40 40 40 40
5 384 384 384 384
6 - - 4768 4768
7 - - 111616 111616
8 - - - 3433600
9 - - - 196968448




Real points in SO(n)

Question
How many real points can SO(n) N £ have (for £ real)?

e SO(2) is a circle, so SO(n) N £ can have 0 or 2 real points.
e The number of real points is always even.

e The number is “usually” zero since SO(n) N R™ is compact.

Taylor Brysiewicz computed the number of real points of SO(n) N £ many
randomly chosen L by:

e using the monodromy algorithm to compute all solutions,
e using alphaCertify to determine which solutions are real.



Experimental results

Frequency of each number of points in SO(n) N L:

#(Real Solutions) n=3 n=4 n=>5
0 340141 95566 1739
2 500250 56795 776
4 655908 69501 659
6 152075 82065 633
8 17622 83635 602
10 0 64685 627
12 0 40326 653
14 0 19839 665
16 0 8499 694
18 0 2884 677
20 0 992 677
22 0 265 727
24 0 82 663
26 0 17 645
28 0 3 554
30 0 1 479
32 0 0 440
34 0 0 367
36 0 0 288
38 0 0 255
40 0 0 175
42 0 0 134
44 0 0 82
46 0 0 59
48 0 0 39
50 0 0 28
52 0 0 18
54 0 0 15
56 0 0 5
58 0 0 4
60 0 0 3
62 0 0 2
64 0 0 0
66 0 0 1
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