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Degree of a variety

Let X be an affine algebraic variety of pure dimension d over algebraically-closed

field K embedded in K N .

Definition

The degree of X , deg X is the number of points in X ∩ L where L is a generic

codimension-d affine linear space.

deg X = #(X ∩ L).

For radical ideal I = I(X ), say deg I := deg X .

• If dim X = 0 then deg X = #(X ).

• If X is a hypersurface with I(X ) = 〈f 〉, deg X = deg f .

• Bézout Bound: If X is a complete intersection of hypersurfaces X1, . . . ,Xr

then deg X ≤ deg X1 · · · deg Xr .



Computing degree symbolically

Definition

For ideal I ⊆ R = K [x1, . . . , xN ], let Rn ⊆ R denote the polynomials of degree at

most n. The Hilbert function of R/I is HFR/I : Z≥0 → Z≥0 defined by

HFR/I(n) = dimK (R/I) ∩ Rn.

The Hilbert function HFR/I(n) is polynomial for n >> 0. This polynomial is the

Hilbert polynomial of R/I, denoted HPR/I(n).

Theorem

Suppose the Hilbert polynomial of R/I(X ) is

HPR/I(X)(n) = adn
d + · · ·+ a0.

Then

dim X = d ,

deg X = d !ad .

(From this fact we extend the definition of deg I to non-radical ideals and ideals

over non-algebraically-closed fields.)

The Hilbert polynomial can be computed from a Gröbner basis.



Varieties O(n) and SO(n)

• O(n) is the subset of GL(Rn) preserving the standard inner product.

• SO(n) is the subset of O(n) also preserving orientation.

Both O(n) and SO(n) are algebraic groups: both groups and algebraic varieties.

O(n) = {A ∈ Matn×n | A
T

A = Id} ⊆ R
n2

,

ai,1aj,1 + · · ·+ ai,naj,n =

{

1 if i = j

0 if i 6= j
for all i ≤ j .

The equations for SO(n) are the same but adding the degree-n equation

det(A) = 1.
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It’s convenient to work in an algebraically-closed field C. From here, take O(n) and

SO(n) to be the Zariski closures of the above real varieties in C
n2

, which does not

change the degree.



Some basic facts about O(n) and SO(n)

Fact

dim O(n) = dim SO(n) =
n(n − 1)

2
.

Fact

O(n) is a complete intersection of
n(n + 1)

2
quadratics.

Fact

• SO(n) is a smooth, irreducible variety.

• O(n) has two disjoint irreducible components, each isomorphic to SO(n).
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Fact

O(n) is a complete intersection of
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quadratics.

Fact

• SO(n) is a smooth, irreducible variety.

• O(n) has two disjoint irreducible components, each isomorphic to SO(n).

Question

What is the degree of SO(n)? (deg O(n) = 2 deg SO(n).)



Symbolic computation of deg SO(n)

Symbolic algorithm:

n Symbolic H.C. Monodromy Formula

2 2

3 8

4 40

5 384

6 -

7 -

8 -

9 -

Limitations:

• Gröbner basis time grows badly in number of variables, which is n2.

• We could only reach n = 5.

• For n even or odd we get only 2 data points each.



Computing degree numerically
Suppose X is a complete intersection, I(X ) = 〈f1, . . . , fr 〉 where r = codim X .

Choose ℓ1, . . . , ℓN−r random affine linear functionals on C
N .

deg X = #V(f1, . . . , fr , ℓ1, . . . , ℓN−r ).

Numerical algebraic geometry can count the solutions. The total degree homotopy

system is

H(t) := tF + γ(1 − t)G

with

• F = (f1, . . . , fr , ℓ1, . . . , ℓN−r ),

• G = (x
d1
1 − 1, . . . , xdr

r − 1, xr+1 − 1, . . . , xN − 1) where di = deg fi (e.g.),

• γ ∈ C \ {0} chosen randomly.

We know all d1 · · · dr solutions to H(0) = G. Track solutions of H(t) as t goes from

0 to 1. Count how many don’t go to ∞.

t = 0 t = 1



Numerical computation of deg SO(n)

Homotopy continuation algorithm:

• Recall O(n) is a complete intersection of n(n + 1)/2 quadratics.

• Begin with a “start system” consisting n(n + 1)/2 quadratics and n(n − 1)/2

linear equations, with known solutions. E.g:

{

a2
i,j − 1 for i ≤ j

ai,j for i > j
.

• Continuously deform start system to system for O(n)∩L. Track each solution.

Limitations:

• Number of paths is 2n(n+1)/2. For n = 6 this is 221 = 2097152.

• We expect deg O(6) to be much smaller than 221.



Mixed volume

Definition

For f ∈ C[x1, . . . , xN ],
f = cα1

x
α1 + · · ·+ cαp x

αp

with α1, . . . , αp ∈ Z
N
≥0 and cαi

6= 0.

The Newton polytope of f is conv(α1, . . . , αp).

BKK bound: For I(X ) = 〈f1, . . . , fN〉 a complete intersection and Ai the Newton

polytope of fi
#(X ∩ (C∗)N) ≤ MV(A1, . . . ,AN)

where MV is the mixed volume.

• The mixed volume can be much smaller than the Bézout bound.

• This suggests a more efficient homotopy start system: Polynomials with the

same Newton polytopes as (f1, . . . , fN).

• MV(A1, . . . ,AN) can be hard to compute, but we don’t need to!

• For O(n), this strategy didn’t help us.



Homotopy continuation results

n Symbolic H.C. Monodromy Formula

2 2 2

3 8 8

4 40 40

5 384 384

6 - -

7 - -

8 - -

9 - -

Homotopy continuation computations were performed with the

NumericalAlgebraicGeometry package for Macaulay2 and BERTINI.



Numerical monodromy computation of deg SO(n)

Monodromy algorithm:

• Start with a subset of the solutions to SO(n) ∩ L (perhaps just one point x0).

• Moving L through a loop in the Grassmannian back to L permutes the points

in SO(n) ∩ L.

L

X

L

X

• Tracking known solutions often leads to new ones.

• Repeat this process to populate all of SO(n) ∩ L.

• A solution can’t leave its irreducible component, but recall SO(n) is

irreducible.



Monodromy results

n Symbolic H.C. Monodromy Formula

2 2 2 2

3 8 8 8

4 40 40 40

5 384 384 384

6 - - 4768

7 - - 111616

8 - - -

9 - - -

Monodromy computations were performed in Macaulay2 using the code of

Duff–Hill–Jensen–Lee–Leykin–Sommars.



Kazarnovskij’s formula

Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an

algebraically closed field. If ρ : G → GL(V ) is a representation with finite kernel

then,

degρ (G) =
m!

|W (G)|(e1!e2! · · · er !)2| ker(ρ)|

∫

CV

(α̌1α̌2 · · · α̌l)
2
dv .

where W (G) is the Weyl group, ei are Coxeter exponents, CV is the convex hull of

the weights, and α̌i are the coroots.

• representation: ρ : SO(n) → GL(Cn) is the standard embedding.

• kernel: ker ρ is trivial.

• rank: r = n/2 or (n − 1)/2 depending on n even or odd.

• dimension: m =
(

n
2

)

.

• size of Weyl group: |W (SO(n))| = r !2r−1 or r !2r .

• Coxeter exponents: e1, . . . , er = 1, 3, . . . , 2r − 3, r − 1 or 1, 3, . . . , 2r − 1.

• weights: ±e1, . . . ,±er .

• coroots: {α̌1, . . . , α̌l} = {x2
i ± x2

j }1≤i<j≤r or {x2
i ± x2

j }1≤i<j≤r ∪ {x2
i }1≤i≤r .



Degree formulas

Proposition (Recht–Robeva)

deg SO(2r) =

(

2r
2

)

!

r !2r−1(r − 1)!2
∏r−1

k=1(2k − 1)!2

∫

CV





∏

1≤i<j≤r

(x2
i − x

2
j )

2



 dv ,

deg SO(2r + 1) =

(

2r+1
2

)

!

r !2r
∏r

k=1(2k − 1)!2

∫

CV





∏

1≤i<j≤r

(x2
i − x

2
j )

2
r
∏

i=1

(2xi)
2



 dv .

where CV is the cross polytope CV = conv(±e1, . . . ,±er) ⊆ R
r .
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To evaluate these integrals:

• CV has a standard simplices ∆r in each orthant, and the integrand is even in

each xi .

• Rewrite the integrand as a sum of monomials with identity:

∏

1≤i<j≤r

(yj − yi) =
∑

σ∈Sr

sgn(σ)

r
∏

i=1

y
σ(i)−1

i .

• Monomials integrate as

∫

∆r

x
a1
1 · · · xar

r dx =
1

(r +
∑

ai)!

r
∏

i=1

ai !.



Theorem

deg SO(n) = 2
n−1

det

[(

2n − 2i − 2j

n − 2i

)]

1≤i,j≤⌊ n
2
⌋

.

Example

deg SO(4) = 2
4−1

det

[(

4
2

) (

2
2

)

(

2
0

) (

0
0

)

]

= 40.

deg SO(5) = 25−1 det

[(

6
3

) (

4
3

)

(

4
1

) (

2
1

)

]

= 384.
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n Symbolic H.C. Monodromy Formula

2 2 2 2 2

3 8 8 8 8

4 40 40 40 40

5 384 384 384 384

6 - - 4768 4768

7 - - 111616 111616

8 - - - 3433600

9 - - - 196968448



Real points in SO(n)

Question

How many real points can SO(n) ∩ L have (for L real)?

• SO(2) is a circle, so SO(n) ∩ L can have 0 or 2 real points.

• The number of real points is always even.

• The number is “usually” zero since SO(n) ∩ R
n2

is compact.

Taylor Brysiewicz computed the number of real points of SO(n) ∩ L many

randomly chosen L by:

• using the monodromy algorithm to compute all solutions,

• using alphaCertify to determine which solutions are real.



Experimental results
Frequency of each number of points in SO(n) ∩ L:

#(Real Solutions) n = 3 n = 4 n = 5

0 340141 95566 1739
2 500250 56795 776

4 655908 69501 659

6 152075 82065 633

8 17622 83635 602

10 0 64685 627

12 0 40326 653
14 0 19839 665

16 0 8499 694

18 0 2884 677

20 0 992 677

22 0 265 727
24 0 82 663

26 0 17 645

28 0 3 554

30 0 1 479

32 0 0 440
34 0 0 367

36 0 0 288

38 0 0 255

40 0 0 175

42 0 0 134

44 0 0 82
46 0 0 59

48 0 0 39

50 0 0 28

52 0 0 18

54 0 0 15
56 0 0 5

58 0 0 4

60 0 0 3

62 0 0 2

64 0 0 0
66 0 0 1
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