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Packages for Biological Applications

PhylogeneticTrees.m2 Hector Banos, Nathaniel Bushek, Ruth
Davidson, Elizabeth Gross, Pamela Harris, Robert Krone, Colby
Long, Allen Stewart, Robert Walker.

ReactionNetworks.m2 Timothy Duff, Cvetelina Hill, Kisun Lee,
Anton Leykin.
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PhylogeneticTrees.m2
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Inferring phylogenetic trees

Salamander:
Frogs

P-roblem.: Lungssh a \"w oo
Given aligned DNA sequences from ol @ s

i . . < mammals
a collection of species, find the tree "F, -
that best describes the species’ an- &ny
cestral history.

Ray-finned
fish

Cartilaginous fish

Human : ...ACCGTGCAACGTGAACGA. ..
Chimp: ...ACCTTGCAAGGTAAACGA...
Gorilla: ...ACCGTGCAACGTAAACTA. ..

0@

Ornithischian -
dinosaurs

Possible Trees:

A

@ ¢ - ¢ ¢ © @ @ '
Human  Chimp Gorilla Chimp ~ Human Gorilla Gorilla Human Chimp
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o Assumes evolution proceeds along
a n-leaf tree according to a Markov
process.

o Assumes site independence.

o Data are the observed fre-
quencies of all n-tuples of DNA
bases.

... ACCGTGCAACGTGAACGA . ..
... ACCTTGCAAGGTAAACGA. ..
... ACCGTGCAACGTAAACTA...

Tree-based Markov models

Gray nodes:
extant species (observable)

White nodes:
extinct species (hidden)
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Group-based Markov models

Parameters: A tree T and transition matrices for each edge.

Example: 4-state group-based Markov model (K3P) on the claw

tree K13

Paja
Paic
Pajc
Par

Pcia
Pc|c
Pcic
Pcir

Pcia
Pg|c
Psi6
Pt

Pria
Pric
Pric
Prir

where Py = P(Xy =i | Y = j).

X1, X2, X5 € {A, C, G, T} are random variables and {A,C,G, T} is

viewed as the group Z, ® Z,.

Y € {A,C,G, T} is a hidden (latent) random variable with distribution

(ma,mc, TG, 7T), e.g. P(Y = A) = 7a.
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Group-based Markov models

Parameters: A tree T and transition matrices for each edge.

Example: 4-state group-based Markov model (K3P) on the claw
tree K13

My, My, M3 =

2 ™R
=2 Q™
@™ 2 > =2
O ™R >

X1, X2, X5 € {A,C, G, T} are random variables and {A,C,G, T} is
viewed as the group Z, ® Z,.

Y € {A,C,G, T} is a hidden (latent) random variable with distribution
(ma,mc, TG, 7T), e.g. P(Y = A) = 7a.
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Group based models

Transition matrices

Cavender-Farris-Neyman (CFN) Jukes-Cantor (JC)
a BB
(Oé 5) B oa B B
B a BB o B
BB B «

Kimura 2-parameter (K2P) Kimura 3-parameter (K3P)
a B v 7 a B v 0
Ba v v goa b vy
Yy v a B vy 6 a B
Yy v B o« b v B «a
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Models, Ideals, and Varieties

The parameterization of the model M+ (K3P) is

o1 R* x R* x R* x R* — R**4x4
4

(m, M1, M3, M3) Z?TiMu ® My; ® M3;
i=1

Image in R**#X4 of a point in the parameter space is a probability table p
whose jklth entry is the joint probability that X; = j, Xo = k, and X5 = /.
4
Pjki = ZﬁiMlijMzika-

i=1
The ideal associated to Mt is
Ir ={f eClpu : j, k,1€{A C,G, T} :f(p)=0 forall pec Mz}

The variety associated to Mt is

Vr={peC"** . f(p)=0forall f € I1} =Im ¢7 = M.
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Group-based models correspond to toric varieties

Theorem (Hendy-Penny 1993, Evans-Speed 1993)

In the Fourier coordinates, a group-based model is parametrized by
monomial functions in terms of the Fourier parameters. (See
Sturmfels-Sullivant 2005 for detailed description)

@ G: ZyorZo X Zo

@ T: ntaxon tree.

@ X (T): set of splits of T.

For split A|B € X(T), associate a set of parameters: aé‘B
g€G.

where

The toric parameterization for the model is:

A|lB . n o
_ HA\Bez(T) IS icagi if> 18 =0,
0 otherwise.
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Kimura 3-parameter model

(T =
1 3 {1]234,2|134, 3|124,
/. 4|123,12|34}
2 4
Parameterization:

_1|234 _2|134 3|124 4123 12|34
deig28384 — g1 9g2 9g3 g Agtg,

Example:

__1]234 2|134 3|124 _4]123 12|34
dACGT =44 dc 4 4r 4d¢
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Mixture models

Due to biological mechanisms, such as

incomplete lineage sorting or horizontal

gene transfer, sometimes we want to con-

sider the mixture of two tree models.
AN

@ Ty, To: n leaf trees ® ¢r1,, ¢T,: parameterization
@ My, My, tree-based maps of M, and Mr,
models @ «: the mixing parameter

The parameterization of the mixture model My, 1, is

1/)7'177'2 . @Tl X ®T2 X [0 1] — A4"71 - RM
(611 927 (k) = Oéd)Tl(el) + (1 - Oé)(;‘)-rz(92)

The corresponding variety of M, 7, is a join variety.

VT17T2 = MTl,Tz =Im '(/)T17T2 = JOin(VTla VTZ)
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Open Problems for mixture models

@ Determine invariants for mixture models These invariants can
be used for model selection and also to prove theoretical results
regarding identifiability.

@ Identifiability Determine when
V1.1m S VT

To establish identifiability, one usually needs to know

@ The dimension of V; 7; and Vo 7; (current work with Hector
Bafos, Nathaniel Bushek, Ruth Davidson, Elizabeth Gross,
Pamela Harris, Robert Krone, Colby Long, Allen Stewart, and
Robert Walker).

@ Some invariants of M 7.

Elizabeth Gross, SJSU Biological Applications



ReactionNetworks.m?2
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How do cells make decisions?

Extracellular ' b
environment

changes i &
00 W
. Plasma 00
Cellular sensing I rane
Internal evaluation y (@
of environment via ) O
signal transduction Cytoplasm mRNA \
v

N
Cellul / Z
ottcome =3
hal
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Chemical Reaction Network Theory

A chemical reaction network is a given by a triple (S,C, R) of finite sets.

@ Species, S = {S1,...,S54}: molecules undergoing a series of
chemical reactions.

@ Complexes, C = {(y,..., Cy}: linear combinations of the species
representing those used and produced in each reaction (i.e.
reactants and products).

@ Reactions, R = {y; — y;}: directed graph with the complexes as
vertices, y;,y; € C

A+ B — 2B

B— A
S={AB}, C={A+B,2B,B,A}, R={A+B—2B,B— A}
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Mass action kinetics

A 2B
A+C D S=1{AB,C,D,E}
\ / C={A2B,A+C,D,B+E}

B+E

We will work in the deterministic setting with the assumption of mass
action kinetics.

Definition

Mass-action kinetics: rate of reaction is proportional to the product of
the concentrations of the species.

We call the constant of proportionality the rate constant.
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Mass action kinetics

k,
A 2B
A+C D S={A,B,C,D,E}
L, C={A2B,A+C,D,B+E}
N/
B+E

We will work in the deterministic setting with the assumption of mass
action kinetics.

Definition

Mass-action kinetics: rate of reaction is proportional to the product of
the concentrations of the species.

We call the constant of proportionality the rate constant.
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Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A+ BB
B A

Let x4 and xg denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A+ B: xaxg, 2B: xé, A xa, B: xg,

d

— =7
dr A

d

—_— =7
di B

Elizabeth Gross, SJSU Biological Applications



Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A+ BB
B A

Let x4 and xg denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A+ B: xaxg, 2B: xé, A xa, B: xg,

iX = —kixax
aAT 1XAXB

d
—_— = ?
thB !

Elizabeth Gross, SJSU Biological Applications



Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A+ BB
B A

Let x4 and xg denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A+ B: xaxg, 2B: xé, A xa, B: xg,

d
—x4 = —k k
thA 1XAXB + K2XB

d
9. =
dt’?
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Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A+ BB
B A

Let x4 and xg denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A+ B: xaxg, 2B: xé, A xa, B: xg,

d

EXA = —kixaxg + koxg
d

EXB = k1XAXB
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Polynomial dynamical systems

The assumption of mass-action kinetics leads to polynomial dynamical
systems that can be read off from the network.

A+ BB
B A

Let x4 and xg denote the concentrations of the species A and B.

Each complex corresponds to a monomial:

A+ B: xaxg, 2B: xé, A xa, B: xg,

d

EXA = —kixaxg + koxg
d k k:

—XB = XAXB — X,
dt B 1XAXB 2XB
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A larger example

k,
A 2B
,
ks
A+C

\/

XA = k1X‘29 — koxa + k3xp — kaxaxc + ksxpxg
Xg = —2k1x,23+2k2xA — ksxgxg + kexp

Xc = k3xp — kaxaxc + ksxpXg

Xp = —k3xp + kaxaxc — kexp

Xg = —ksxgXg + kexp
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An even larger example

Shuttle model for Wnt signaling pathway

MacLean, Rosen, Byrne, Harrington 2015

k1
T == T,
k2 k14 k16
ks ks X3+ Tg :2 Ty5 —— T3 + X7
x2+:c4k@x14*>x2+r5 k15
°4 k17 k19
ke ks Ty + g == 117 —— Tg + Ty
Ts + Tg *MT Tig — Xy + Ty F1s
v k20 ka2
ko k11 I6+$11@$19*’l’6+®
Ty +T10T——=218 —— T4+ 0 k21
k1o kos
kra T —— 0
0 — 10

k24
ki3 T11 + T2 ¥ T13
z10 —— 0 ks

k30
T10 T> T11
31
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Biochemical Reaction Networks — Polynomials

Shuttle model for Wnt signaling pathway

& .
= 1 = —k1w1 + Koz
ks o Ty = k1z1 — (ko + kao) o + koys — kswowg + (kg + ks) 214
To+TgT=——=T1y —— To+ T5 .
ke T3 = koo — koras — krawswe + (kis + kig) 215
ko e .
5 +“%-ru, syt T4 = —k3woxy — kota10 + ka14 + ks1e + (k1o + k11)21s
e ey T = —kogTs + kooxy — keTsTs + ksr1g4 + k721
T4t T =T T .
o T = —k14376 — kaoTer11 + k15215 + ko174 (Kar + Kaz)19
0210 d7 = koss — kogy — k77 + Kiex15 + kisti7
ks . .
219220 Gy = —d15 = —kgzsrs + (k7 + ks)z16
@54 “,kﬁlfmk—m Fa Tg = —dy7 = —k177w9 + (kg + ko) 17
e b, Ty = k1o — (k13 + kso) 210 — koxam1o + ks1211 + kio21s
Ty + Ty === T17 —— T + Ty . . L PR . -
s T11 = —kawi1 + k310 — kw11 — koo — k11 %12 + kas1z + karmig
ka0 k22 . 5 o , L.
:m,+.mk<41‘—:miwrb+@ Ty = —Ti3 = —koa11%12 + ko513
" .
o 0 T4 = kawaxy — (ka4 ks) 714
a2 .
o a5 = kazsze — (kis + kis) 215
o e TS Ty = koxazrg — (ko + ki1)21s
kg _ S -
T %rd Z1g = kaoer1y — (ka1 + Ka2) 19
kas
L5 == 7
kag
k3o
10 === T11
ka1

G—Harrington—Rosen—Sturmfels, Algebraic Systems Biology:
A Case Study for the Wnt Pathway, 2016
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Biology <+ Algebra and Geometry

Biological —  Model —({a) Model analysis (b) Experimental design
hypothesis' ' | construction Theorem | Im ‘
Wnt Signal XX kXt Re
o Vy<9 Prop. 6.2, Ex. 8.1 Matroids
L o Model f(x,k) \ Discriminant, Ex. 4.3 Prop. 5.2, Ex. 8.2
° . 9_
'., 4 Steady states =0 /Parameter estimation, Cor. 7.2, Ex. 8.4 l
p Model rejection via Circuits Model variety Experiments
Response? Biological Ex3.3,Ex.83 Data'poinr
insight \(c) Model and data compatibility
‘ Biology Algebra and Geometry
Multistationarity Real Algebraic Geometry
Experimental Design Algebraic Matroids
Model Dynamics Polyhedral Geometry
Model Selection Solving Polynomial Systems
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Model Selection & Steady State Invariants

A steady-state invariant is a polynomial in the species
concentrations (the x's) and the rate constants (the k's) that
vanishes when the system is at steady state.

Steady-state invariants can be used to perform model selection by

@ Comparing the behavior of the
species concentrations with the
algebraic relation defined by
the steady-state invariant
(Gunawardena 2007).

@ Computing the maximum likelihood
using numerical algebraic geometry L N
(G-Davis-Ho-Bates-Harrington 2016)
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Open Problems

@ Computing elimination ideals Elimination ideals are used for
model selection. (Exploring how to construct elimination ideals by
looking at subnetworks with Heather Harrington, Nikki Meshkat,
and Anne Shiu)

@ Steady state degree The steady-state degree is the number of
complex solutions to the steady-state equations for generic choice of
parameters. (Ongoing work with Cvetelina Hill).

@ Euclidean distance degree The ED degree quantifies the algebraic
complexity of solving the goodness-of-fit problem. (Current work by
Michael Adamer and Martin Helmer)
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Thank you!

Thank you!
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