newPackage(
"IntegralClosure",
Version => "1.10",
Date => "31 Dec 2020",
Authors => {
{Name => "David Eisenbud", Email => "de@msri.org", HomePage => "http://www.msri.org/~de/"},
{Name => "Mike Stillman", Email => "mike@math.cornell.edu", HomePage => "http://www.math.cornell.edu/~mike"},
{Name => "Amelia Taylor", Email => "originalbrickhouse@gmail.com"}
},
Headline => "integral closure",
Keywords => {"Commutative Algebra"},
PackageImports => {
"PrimaryDecomposition", -- only used for an obscure "rad" function
"ReesAlgebra" -- used for integral closure of an ideal
},
PackageExports => {
"MinimalPrimes" -- really helps speed up most computations here. Use minprimes.
},
DebuggingMode => false,
AuxiliaryFiles => true
)
-- The present version (for M2 1.16) is not done being cleaned up,
-- but it does fix a bad bug involving integral closure of ideals.
--
importFrom_Core { "generatorSymbols" } -- use as R#generatorSymbols.
importFrom_MinimalPrimes { "rad" } -- a function we seem to be using in integralClosure.
export{
-- methods
"integralClosure",
"icFractions",
"icMap",
"isNormal",
"conductor",
"makeS2",
"idealizer",
"ringFromFractions",
-- small characteristic method
"icFracP",
"icPIdeal",
--mes--"extendIdeal",
"testHunekeQuestion",
-- optional argument names
"Keep",
"Index",
--mes--"Denominator",
"ConductorElement",
-- strategy options for integralClosure (passed on to its subroutines)
"AllCodimensions",
"RadicalCodim1",
"Radical",
"StartWithOneMinor",
"SimplifyFractions",
"Vasconcelos"
}
makeVariable = opts -> (
s := opts.Variable;
if instance(s,Symbol) then s else
if instance(s,String) then getSymbol s else
error "expected Variable option to provide a string or a symbol"
)
integralClosure = method(Options=>{
Variable => "w",
Limit => infinity,
Strategy => {}, -- a mix of certain symbols
Verbosity => 0,
--mes--Denominator => null, -- if given, should be a nonzero divisor in Jacobian ideal of the ring.
Keep => null -- list of variables to not simplify away. Default is all original vars
}
)
idealInSingLocus = method(Options => {
Verbosity => 0,
Strategy => {}
})
idealInSingLocus Ring := Ideal => opts -> S -> (
-- Input: ring S = S'/I, where S' is a flattened poly ring.
-- Verbosity: if >0 display timing
-- Strategy: List. If isMember(StartWithOneMinor, opts.Strategy) then
-- Output:
-- ideal in non-normal locus
-- private subroutine of integralClosure
if opts.Verbosity >= 1 then (
<< " [jacobian time " << flush;
);
if member(StartWithOneMinor, opts.Strategy) then
t1 := timing (J := ideal nonzeroMinor(codim ideal S, jacobian S))
else
t1 = timing (J = minors(codim ideal S, jacobian S));
if opts.Verbosity >= 1 then (
<< t1#0 << " sec #minors " << numgens J << "]" << endl;
);
J
)
integralClosure(Ring, Ring) := Ring => o -> (B,A) -> (
(fB,fromB) := flattenRing B;
fC := integralClosure(fB, o);
if fB === fC and coefficientRing B === A then return B;
gensA := generators(A, CoefficientRing => ZZ);
newvars := drop(gens ambient fC, - #gensA);
newdegs := drop(degrees ambient fC, - #gensA);
aC := A (monoid[newvars, Degrees => newdegs, Join => false]);
L := trim sub(ideal fC, aC);
C := aC/L;
B.icFractions = fB.icFractions;
fCtoC := map(C, fC, gens(C, CoefficientRing => coefficientRing fC));
B.icMap = fCtoC * fB.icMap * fromB;
C
)
integralClosure Ring := Ring => o -> (R) -> (
-- R: Ring, a reduced affine ring. TODO: can we handle integral closures over ZZ as well?
-- answer: if we choose J in the non-normal ideal some other way?
if R.?icMap then return target R.icMap;
verbosity := o.Verbosity;
strategies := if instance(o.Strategy, Symbol) then {o.Strategy} else o.Strategy;
strategyList := {AllCodimensions, RadicalCodim1, Radical,
StartWithOneMinor, SimplifyFractions, Vasconcelos};
if not isSubset(strategies, strategyList) then
error("expected Strategy option to be either an element of, or a list containing some of, "|toString strategyList);
if #((set strategies) * set {AllCodimensions, RadicalCodim1, Radical}) >= 2 then
error " expected Strategy option to include at most one of AllCodimensions, Radical, Radical";
if ultimate(coefficientRing, R) =!= coefficientRing R
then return integralClosure(R, coefficientRing R, o);
(S,F) := flattenRing R;
-- right here, we will grab the variables to be excluded
-- this seems a bit awkward, perhaps there is a better way?
T := ambient S;
kk := ultimate(coefficientRing,T);
allgens := generators(T, CoefficientRing => kk);
keepvars := o.Keep; -- TODO MES: bug? these will not be in the correct ring, bring them over?
-- TODO MES: check that o.Keep contains a list of variables in the ring R?
if keepvars === null then keepvars = allgens;
P := ideal S;
startingCodim := codim P;
isCompleteIntersection := (startingCodim == numgens P);
G := map(frac R, frac S, substitute(F^-1 vars S, frac R));
isS2 := isCompleteIntersection; -- true means is, false means 'do not know'
nsteps := 0;
t1 := null; -- used for timings
allCodimensionsNotPresent := not member(AllCodimensions, strategies);
codim1only := not member(AllCodimensions, strategies);
-- this means: don't bother to compute the S2-ification
-- and don't try to take only the codim 1 part of the radical
-- of the jacobian locus.
------------------------------------------
-- Step 1: Find ideal in singular locus --
------------------------------------------
-- other possible things here: make a list of ideals, and we
-- will compute End of each in turn.
-- (b) use discriminant
J := idealInSingLocus(S, Verbosity => verbosity, Strategy => strategies);
-- returns ideal in non-normal locus S
codimJ := codim J;
isR1 := (codimJ > 1);
if verbosity >= 1 then (
<< "integral closure nvars " << numgens S;
<< " numgens " << numgens ideal S;
if isS2 then << " is S2";
if isR1 then << " is R1";
<< " codim " << startingCodim;
<< " codimJ " << startingCodim + codimJ << endl;
<< endl;
);
------------------------------
-- Step 2: make the ring S2 --
------------------------------
-- unless we are using an option that
-- doesn't require it.
if not isS2 and allCodimensionsNotPresent then (
if verbosity >= 1 then
<< " S2-ification " << flush;
t1 = (timing F'G' := makeS2(target F,Variable=>makeVariable o,Verbosity=>verbosity));
nsteps = nsteps + 1;
if verbosity >= 1 then
<< t1#0 << " seconds" << endl;
if F'G' === null then (
<< "warning: probabilistic computation of S2-ification failed " << endl;
<< " reverting to standard algorithm" << endl;
strategies = append(strategies, AllCodimensions);
codim1only = false
) else (
(F', G') := F'G';
F = F'*F;
G = G*G';
-- also extend J to be in this ring
J = trim(F' J);
isS2 = true;
)
);
denom := null; --mes--o.Denominator; -- either null (means for the routine to find a possible denominator),
-- or a nzd in the radical of the ideal J.
-------------------------------------------
-- Step 3: incrementally add to the ring --
-------------------------------------------
if not isR1 or not codim1only then (
-- loop (note: F : R --> Rn, G : frac Rn --> frac R)
while (
F1 := F;
if verbosity >= 1 then << " [step " << nsteps << ": " << flush;
t1 = timing((F,G,J,denom) = integralClosure1(F1,G,J,denom,nsteps,makeVariable o,keepvars,strategies,verbosity));
if verbosity >= 1 then (
if verbosity >= 5 then (
<< " time " << t1#0<< " sec fractions " << first entries G.matrix << "]" << endl << endl;
)
else (
<< " time " << t1#0<< " sec #fractions " << numColumns G.matrix << "]" << endl;
);
);
nsteps = nsteps + 1;
nsteps < o.Limit and target F1 =!= target F
) do (
));
R.icFractions = first entries G.matrix;
R.icMap = F;
target R.icMap
)
doingMinimalization = true;
--the following finds an element in the intersection of the
--principal ideals generated by the ring elements in a list.
commonDenom = X -> findSmallGen intersect(apply (X, x->ideal x));
-- Compute the list of minimal primes of J
-- Inputs:
-- J:Ideal (in a ring R0. R0 is an affine ring, which should be a domain).
-- codim1only: Boolean
-- nsteps: ZZ (currently unused. If > 0, this was an indication to add in some minors of the
-- Jacobian ideal of J).
-- strategies: List, containing a subset of:
-- RadicalCodim1, Radical
-- These mean:
-- Radical: compute radical using command 'radical'
-- RadicalCodim1: compute radical using command 'rad' in PrimaryDecomposition package
-- neither present: compute radical using 'decompose'.
-- AddMinor: unused. Used to be an indication of whether to add in some Jacobian determinants.
-- Output: List, the list of minimal primes of J
-- of codim <= 1 in R0/J (if codim1only is true, or RadicalCodimi1 is set, or
-- of all codimensions, (otherwise)
-- If codim J > 1 and we are only collecting components of codim 1, then {} is returned.
-- Rational:
-- why does this function exist, rather than just calling minimalPrimes?
-- What this does differently than minimalPrimes:
-- replaces each generator of (trim J) (flattened ring too), with its squarefree part.
-- in one case, it does call 'rad' in PrimaryDecompositions package.
-- TODO for this function:
-- remove nsteps.
-- radical and decompose in M2 call the same function these days.
-- remove dead code?
radicalJ = (J,codim1only,nsteps,strategies,verbosity) -> (
-- Old comments, to remove;
-- J is an ideal in R0.
-- compute the radical of J, or perhaps a list of
-- components of J. Possibly:
-- remove components of codim > 1 in R0.
-- add in new elements of the singular locus of J first, or after
-- computing the radical.
-- Choices for the radical:
-- (a) intersection of decompose
-- (b) use rad, limiting to codim 1
-- (c) what else?
useRadical := false;
useRadicalCodim1 := false;
useDecompose := false; --mes-todo-- this is always false here.
if member(RadicalCodim1, strategies) then useRadicalCodim1 = true;
if member(Radical, strategies) then useRadical = true;
R0 := ring J;
J = trim J;
if codim1only and codim J > 1 then return {};
if verbosity >= 2 then (
<< endl << " radical " <<
(if useRadical then "(use usual radical) "
else if useRadicalCodim1 then "(use codim1radical) "
else if useDecompose then "(use decompose) "
else "(use minprimes) ")
<< flush;
);
Jup := trim first flattenRing J;
Jup = ideal apply(Jup_*, f -> product apply(apply(toList factor f, toList), first));
Jup = trim ideal gens gb Jup;
if verbosity >= 5 then (
<< "R0 = " << toExternalString ring Jup << endl;
<< "J0 = " << toString Jup << endl;
);
t1 := timing(radJup :=
if useRadical then {radical Jup}
else if useRadicalCodim1 then {rad(Jup,0)}
else if useDecompose then decompose Jup
else minprimes(Jup, Verbosity => max(verbosity-3,0)));
radJ := apply(radJup, L -> trim promote(L, R0));
if verbosity >= 4 then << "done computing radical" << endl << flush;
if verbosity >= 2 then << t1#0 << " seconds" << endl;
if codim1only then radJ = select(radJ, J -> codim J == 1);
if verbosity >= 5 then (
<< "dimension of components: " << apply(radJ, codim) << endl;
<< "components of radJ: " << endl;
<< netList radJ
<< endl;
);
radJ
)
-- integralClosure1: the iterative step in the integral closure algorithm.
-- Some rings appearing here:
-- R is an affine domain, the original ring for which we are computing the integral closure
-- R0 is a partial normalization.
-- Inputs:
-- F:RingMap, F : R -> R0, R0 is assumed to be a domain
-- G:RingMap G : frac R0 --> frac R (really, the list of fractions).
-- J:Ideal, an ideal in the non-normal ideal of R0
-- denom: either null, or, a RingElement, a nonzero-divisor in R0, in the radical of J.
-- if null, this function will choose an element of this radical.
-- nsteps:ZZ
-- varname:Symbol
-- keepvars:List of variables to keep (where are these variables?) if/when we prune the ring.
-- strategies:List of elements from:
-- AllCodimensions
-- SimplifyFractions
-- doingMinimalization (always true, can't give this: it is currently a local variable set to true).
-- Outputs:
-- F1:RingMap, F1 : R --> R1, R1 is a (potentially) larger partial normalization.
-- G1:RingMap, G1: frac R1 --> frac R (list of fractions, one for each variable in the new R1)
-- J1:Ideal, J1 = radJ R1, the extension of the radical of J to R1.
-- denom1: either null, if denom===null, or 'denom' in the ring R1.
-- Features of the output:
-- The ring R0 is integrally closed (normal) iff target F === target F1.
-- New variables in the ring R1 will be named varname_(nsteps, 0), varnames_(nsteps, 1), ...
integralClosure1 = (F,G,J,denom,nsteps,varname,keepvars,strategies,verbosity) -> (
codim1only := not member(AllCodimensions, strategies);
R0 := target F;
J = trim J;
radJ := radicalJ(J, codim1only, nsteps, strategies,verbosity);
if #radJ == 0 then return (F,G,ideal(1_R0),denom);
radJ = trim intersect radJ;
f := if denom === null then findSmallGen radJ else denom; -- we assume that f is a non-zero divisor!!
--TODO: put in a test for f a nzd, and an option isDomain => true
--syz matrix{{f}} ==0
-- Compute Hom_S(radJ,radJ), using f as the common denominator.
if verbosity >= 3 then <<" small gen of radJ: " << f << endl << endl;
if verbosity >= 6 then << "rad J: " << netList flatten entries gens radJ << endl;
if verbosity >= 2 then <<" idlizer1: " << flush;
t1 := timing((He,fe) := endomorphisms(radJ,f));
if verbosity >= 2 then << t1#0 << " seconds" << endl;
if verbosity >= 6 then << "endomorphisms returns: " << netList flatten entries He << endl;
--TODO: make verbosity into Verbosity, a passed option
-- here is where we improve or change our fractions
if He == 0 then (
-- there are no new fractions to add, and this process will add no new fractions
return (F,G,ideal(1_R0),denom);
);
if verbosity >= 6 then (
<< " about to add fractions" << endl;
<< " " << apply(flatten entries He, g -> G(g/f)) << endl;
);
if verbosity >= 2 then <<" idlizer2: " << flush;
-- This is almost always a bad idea: !!
-- the issue is that the fraction field operations can be very bad.
if member(SimplifyFractions, strategies)
then (He,fe) = (
Hef := apply(flatten entries He, h->h/f);
Henum := Hef/numerator;
Heden := Hef/denominator;
Henumred := apply(#Hef, i-> Henum_i % Heden_i);
fe1 := commonDenom Heden;
multipliers := apply(Heden, H -> fe1//H);
He1 := matrix{
apply(#Hef, i -> (Henumred#i * multipliers#i))
};
(He1,fe1));
if verbosity >= 6 then (
<< " reduced fractions: " << endl;
<< " " << apply(flatten entries He, g -> G(g/fe)) << endl;
);
t1 = timing((F0,G0) := ringFromFractions(He,fe,Variable=>varname,Index=>nsteps));
if verbosity >= 2 then << t1#0 << " seconds" << endl;
-- These would be correct, except that we want to clean up the
-- presentation
R1temp := target F0;
if R1temp === R0 then return(F,G,radJ,denom);
if doingMinimalization then (
if verbosity >= 2 then << " minpres: " << flush;
R1tempAmbient := ambient R1temp;
keepindices := apply(keepvars, x -> index substitute(x, R1tempAmbient));
t1 = timing(R1 := minimalPresentation(R1temp, Exclude => keepindices));
if verbosity >= 2 then << t1#0 << " seconds" << endl;
i := R1temp.minimalPresentationMap; -- R1temp --> R1
iinv := R1temp.minimalPresentationMapInv.matrix; -- R1 --> R1temp
iinvfrac := map(frac R1temp , frac R1, substitute(iinv,frac R1temp));
-- We also want to trim the ring
F0 = i*F0; -- R0 --> R1
if denom === null then
(F0*F,G*G0*iinvfrac,F0 radJ, null)
else
(F0*F,G*G0*iinvfrac,F0 radJ, F0 denom)
)
else if denom === null then
(F0,G0,F0 radJ,null)
else
(F0,G0,F0 radJ, F0 denom)
)
---------------------------------------------------
-- Support routines, perhaps should be elsewhere --
---------------------------------------------------
randomMinors = method()
randomMinors(ZZ,ZZ,Matrix) := (n,d,M) -> (
--produces a list of n distinct randomly chosend d x d minors of M
r := numrows M;
c := numcols M;
if d > min(r,c) then return null;
if n >= binomial(r,d) * binomial(c,d)
then return (minors(d,M))_*;
L := {}; -- L will be a list of minors, specified by the pair of lists "rows" and "cols"
dets := {}; -- the list of determinants taken so far
rowlist := toList(0..r-1);
collist := toList(0..c-1);
ds := toList(0..d-1);
for i from 1 to n do (
-- choose a random set of rows and of columns, add it to L
-- only if it doesn't appear already. When a pair is added to L,
-- the corresponding minor is added to "dets"
while (
rows := sort (random rowlist)_ds ;
cols := sort (random collist)_ds ;
for p in L do (if (rows,cols) == p then break true);
false)
do();
L = L|{(rows,cols)};
dets = dets | {det (M^rows_cols)}
);
dets
)
nonzeroMinor = method(Options => {Limit => 100})
nonzeroMinor(ZZ,Matrix) := opts -> (d,M) -> (
--produces one d x d nonzero minor, making up to 100 random tries.
r := numrows M;
c := numcols M;
if d > min(r,c) then return null;
candidate := 0_(ring M);
rowlist := toList(0..r-1);
collist := toList(0..c-1);
ds := toList(0..d-1);
for i from 1 to opts.Limit do(
-- choose a random set of rows and of columns, test the determinant.
rows := sort (random rowlist)_ds ;
cols := sort (random collist)_ds ;
candidate = det (M^rows_cols);
if candidate != 0 then return(candidate);
);
error("no nonzero minors found");
)
-------------------------------------------
-- Rings of fractions, finding fractions --
-------------------------------------------
findSmallGen = (J) -> (
a := toList((numgens ring J):1);
L := sort apply(J_*, f -> ((weightRange(a,f))_1, size f, f));
--<< "first choices are " << netList take(L,3) << endl;
-- << "ideal: " << toString J << endl;
L#0#2
)
idealizer = method(Options=>{
Variable => "w",
Index => 0,
Strategy => {},
Verbosity => 0
}
)
idealizer (Ideal, RingElement) := o -> (J, g) -> (
-- J is an ideal in a ring R containing a nonzerodivisor
-- g is a nonzero divisor in J
-- compute R1 = Hom(J,J) = (g*J:J)/g
-- returns a sequence (F,G), where
-- F : R --> R1 is the natural inclusion
-- G : frac R1 --> frac R,
-- optional arguments:
-- o.Variable: base name for new variables added
-- o.Index: the first subscript to use for such variables
R := ring J;
(H, f) := if member(Vasconcelos, o.Strategy) then (
vasconcelos (J,g))
else
endomorphisms (J,g);
if o.Verbosity >= 5 then << "endomorphism fractions:" << netList prepend(f,flatten entries H) << endl;
if H == 0 then
(id_R, map(frac R, frac R, vars frac R)) -- in this case R is isomorphic to Hom(J,J)
else
ringFromFractions(H, f, Variable=>makeVariable o, Index=>o.Index, Verbosity => o.Verbosity)
)
endomorphisms = method()
endomorphisms(Ideal,RingElement) := (I,f) -> (
--computes generators in frac ring I of
--Hom(I,I)
--assumes that f is a nonzerodivisor.
--NOTE: f must be IN THE CONDUCTOR;
--else we get only the intersection of Hom(I,I) and f^(-1)*R.
--returns the answer as a sequence (H,f) where
--H is a matrix of numerators
--f = is the denominator.
if not fInIdeal(f,I) then error "Proposed denominator was not in the ideal.";
timing(H1 := (f*I):I);
H := compress ((gens H1) % f);
(H,f)
)
vasconcelos = method()
vasconcelos(Ideal,RingElement) := (I,f) -> (
--computes generators in frac ring I of
--(I^(-1)*I)^(-1) = Hom(I*I^-1, I*I^-1),
--which is in general a larger ring than Hom(I,I)
--(though in a 1-dim local ring, with a radical ideal I = mm,
--they are the same.)
--assumes that f is a nonzerodivisor (not necessarily in the conductor).
--returns the answer as a sequence (H,f) where
--H is a matrix of numerators
--f is the denominator. MUST BE AN ELEMENT OF I.
if f%I != 0 then error "Proposed denominator was not in the ideal.";
m := presentation module I;
timing(n := syz transpose m);
J := trim ideal flatten entries n;
timing(H1 := ideal(f):J);
H := compress ((gens H1) % f);
(H,f)
)
ringFromFractions = method(Options=>{
Variable => "w",
Index => 0,
Verbosity => 0})
ringFromFractions (Matrix, RingElement) := o -> (H, f) -> (
-- f is a nonzero divisor in R
-- H is a (row) matrix of numerators, elements of R
-- Forms the ring R1 = R[H_0/f, H_1/f, ..].
-- returns a sequence (F,G), where
-- F : R --> R1 is the natural inclusion
-- G : frac R1 --> frac R,
-- optional arguments:
-- o.Variable: base name for new variables added, defaults to w
-- o.Index: the first subscript to use for such variables, defaults to 0
-- so in the default case, the new variables produced are w_{0,0}, w_{0,1}...
-- MES TODO: possible problem: in the inhomogeneous case, we might generate variables of degree 0.
-- While this shouldn't be a problem, 'decompose' fails under this situation.
-- Fix for now: if singly graded, but not homog, if a degree comes out <= 0 then set it to 1.
isgraded := isHomogeneous H and isHomogeneous f;
R := ring H;
fractions := apply(first entries H,i->i/f);
Hf := H | matrix{{f}};
-- Make the new polynomial ring.
n := numgens source H;
newdegs := degrees source H - toList(n:degree f);
if not isgraded and #newdegs#0 === 1 and any(newdegs, i -> i == {0})
then newdegs = for d in newdegs list if first d > 0 then d else {1};
degs := join(newdegs, (monoid R).Options.Degrees);
MO := prepend(GRevLex => n, (monoid R).Options.MonomialOrder);
kk := coefficientRing R;
var := makeVariable o;
A := kk(monoid [var_(o.Index,0)..var_(o.Index,n-1), R#generatorSymbols,
MonomialOrder=>MO, Degrees => degs]);
I := ideal presentation R;
IA := ideal ((map(A,ring I,(vars A)_{n..numgens R + n-1})) (generators I));
B := A/IA; -- this is sometimes a slow op
-- Make the linear and quadratic relations
varsB := (vars B)_{0..n-1};
RtoB := map(B, R, (vars B)_{n..numgens R + n - 1});
XX := varsB | matrix{{1_B}};
-- Linear relations in the new variables
lins := XX * RtoB syz Hf;
-- linear equations(in new variables) in the ideal
-- Quadratic relations in the new variables
tails := (symmetricPower(2,H) // f) // Hf;
tails = RtoB tails;
quads := matrix(B, entries (symmetricPower(2,varsB) - XX * tails));
both := ideal lins + ideal quads;
gb both; -- sometimes slow
Bflat := flattenRing (B/both); --sometimes very slow
R1 := trim Bflat_0; -- sometimes slow
-- Now construct the trivial maps
F := map(R1, R, (vars R1)_{n..numgens R + n - 1});
G := map(frac R, frac R1, matrix{fractions} | vars frac R);
(F, G)
)
fInIdeal = (f,I) -> (
-- << "warning: fix fInIdeal" << endl;
if isHomogeneous I -- really want to say: is the ring local?
then f%I == 0
else substitute(I:f, ultimate(coefficientRing, ring I)) != 0
)
-- PURPOSE: check if an affine domain is normal.
-- INPUT: any quotient ring.
-- OUTPUT: true if the ring is normal and false otherwise.
-- COMMENT: This computes the jacobian of the ring which can be expensive.
-- However, it first checks the less expensive S2 condition and then
-- checks R1.
isNormal = method()
isNormal(Ring) := Boolean => (R) -> (
-- 1 argument: A ring - usually a quotient ring.
-- Return: A boolean value, true if the ring is normal and false
-- otherwise.
-- Method: Check if the Jacobian ideal of R has
-- codim >= 2, if true then check the codimension
-- of Ext^i(S/I,S) where R = S/I and i>codim I. If
-- the codimensions are >= i+2 then return true.
I := ideal (R);
M := cokernel generators I;
n := codim I;
test := apply((dim ring I)-n-1,i->i);
if all(test, j -> (codim Ext^(j+n+1)(M,ring M)) >= j+n+3)
then (
Jac := minors(n,jacobian R);
d := dim Jac;
if d < 0 then d = -infinity;
dim R - d >=2)
else false
)
--------------------------------------------------------------------
-- MES TODO: don't require homogeneous!!
conductor = method()
conductor RingMap := Ideal => (F) -> (
--Input: A ring map where the target is finitely generated as a
--module over the source.
--Output: The conductor of the target into the source.
--Assumption: if R = source F, then R.icFractions is set
-- or R is homogeneous
R := source F;
if false and R.?icFractions
then (
-- MES TODO: why is this commented out?
-- here we have a set of fractions which generate the integral closure
L := R.icFractions;
L = apply(L, h -> {numerator h, denominator h});
L = select(L, h -> h#1 != 1);
ans := ideal(1_R);
scan(L, h -> (
L1 := (ideal h#1) : h#0;
ans = trim intersect(ans, L1);
));
ans
)
else if isHomogeneous (source F)
then(M := presentation pushForward(F, (target F)^1);
P := target M;
intersect apply((numgens P)-1, i->(
m:=matrix{P_(i+1)};
I:=ideal modulo(m,matrix{P_0}|M))))
else error "conductor: expected a homogeneous ideal in a graded ring"
)
conductor Ring := (R) -> conductor icMap R
icMap = method()
icMap(Ring) := RingMap => R -> (
-- 1 argument: a ring. May be a quotient ring, or a tower ring.
-- Returns: The map from R to the integral closure of R.
-- Note: This is a map where the target is finitely generated as
-- a module over the source, so it can be used as the input to
-- conductor and other methods that require this.
if R.?icMap then R.icMap
else if isNormal R then id_R
else (
integralClosure R;
R.icMap
)
)
--------------------------------------------------------------------
icFractions = method()
icFractions(Ring) := Matrix => (R) -> (
if R.?icFractions then R.icFractions
else if isNormal R then vars R -- MES TODO: is this too expensive?
else (
integralClosure R;
R.icFractions
)
)
--------------------------------------------------------------------
icFracP = method(Options=>{ConductorElement => null, Limit => infinity, Verbosity => 0})
icFracP Ring := List => o -> (R) -> (
-- 1 argument: a ring whose base field has characteristic p.
-- Returns: Fractions
-- MES:
-- ideal presentation R ==== ideal R
-- does not seem to handle towers
-- this ring in the next line can't really be ZZ?
if ring ideal presentation R === ZZ then (
D := 1_R;
U := ideal(D);
if o.Verbosity > 0 then print ("Number of steps: " | toString 0 | ", Conductor Element: " | toString 1_R);
)
else if coefficientRing(R) === ZZ or coefficientRing(R) === QQ then error("Expected coefficient ring to be a finite field")
else(
if o.ConductorElement === null then (
P := ideal presentation R;
c := codim P;
S := ring P;
J := promote(jacobian P,R);
n := 1;
det1 := ideal(0_R);
while det1 == ideal(0_R) do (
det1 = minors(c, J, Limit => n);
n = n+1
);
D = det1_0;
D = (mingens(ideal(D)))_(0,0);
)
else D = o.ConductorElement;
p := char(R);
K := ideal(1_R);
U = ideal(0_R);
F := apply(generators R, i-> i^p);
n = 1;
while (U != K) do (
U = K;
L := U*ideal(D^(p-1));
f := map(R/L,R,F);
K = intersect(kernel f, U);
if (o.Limit < infinity) then (
if (n >= o.Limit) then U = K;
);
n = n+1;
);
if o.Verbosity > 0 then print ("Number of steps: " | toString n | ", Conductor Element: " | toString D);
);
U = mingens U;
if numColumns U == 0 then {1_R}
else apply(numColumns U, i-> U_(0,i)/D)
)
icPIdeal = method()
icPIdeal (RingElement, RingElement, ZZ) := Ideal => (a, D, N) -> (
-- 3 arguments: An element in a ring of characteristic P that
-- generates the principal ideal we are interested in, a
-- non-zerodivisor of $ in the conductor, and the number of steps
-- in icFracP to compute the integral closure of R using the
-- conductor element given.
-- Returns: the integral closure of the ideal generated by the
-- first argument.
n := 1;
R := ring a;
p := char(R);
J := ideal(1_R);
while (n <= N+1) do (
F := apply(generators R, i-> i^(p^n));
U := ideal(a^(p^n)) : D;
f := map(R/U, R, F);
J = intersect(J, kernel f);
n = n+1;
);
J
)
----------------------------------------
-- Integral closure of ideal -----------
----------------------------------------
-* version 2. Not working yet, Dec 2020, perhaps use something like this in M2 1.18?
integralClosure(Ideal, RingElement, ZZ) := opts -> (I,a,D) -> (
S := ring I;
if a % I != 0 then error "The ring element should be an element of the ideal.";
if ((ideal 0_S):a) != 0 then error "The given ring element must be a nonzerodivisor of the ring.";
z := local z;
w := local w;
I = trim I;
Reesi := reesAlgebra(I,a,Variable => z);
Rbar := integralClosure(Reesi, S, Variable => w); --opts is missing
T := S[select(gens Rbar, x -> first degree x == 0)];
J := ideal select((ideal Rbar)_*, f -> first degree f == 0);
count := -1;
TRbar := map(T,ring J,for x in gens ring J list
if first degree x == 0
then (count = count+1; T_count)
else 0);
S' := T/TRbar J;
S'S := map(S', S);
M'' := basis({D}, Rbar, SourceRing => S');
M := coimage M'';
IS'D := S'S (I^D);
-- the last generators of M correspond to IS'D, in order (checking on this).
rg := splice{(numgens M - numgens IS'D)..(numgens M - 1)};
phi := map(M, module IS'D, M_rg);
assert(isWellDefined phi);
I' := extendIdeal phi;
-- error "debug me";
preimage(map(S', S), I')
)
*-
integralClosureOfIdeal = (I, a, D, opts) -> (
-- Assumption: ring I is integrally closed.
S := ring I;
if a % I != 0 then error "The ring element should be an element of the ideal.";
if ((ideal 0_S):a) != 0 then error "The given ring element must be a nonzerodivisor of the ring.";
z := local z;
w := local w;
I = trim I;
Reesi := (flattenRing reesAlgebra(I,a,Variable => z))_0;
Rbar := integralClosure(Reesi, opts, Variable => w);
psi := map(Rbar,S,DegreeMap =>d->prepend(0,d));
zIdeal := ideal(map(Rbar,Reesi))((vars Reesi)_{0..numgens I -1});
zIdealD := module zIdeal^D;
LD := prepend(D,toList(degreeLength S:null));
degD := image basisOfDegreeD(LD,Rbar); --all gens of first-degree D.
degsM := apply(degrees cover degD,d->drop(d,1));
--the following line is ***slow***
psi' := map(degD,S^(-degsM),psi,id_(cover degD));
mapback := map(S,Rbar, matrix{{numgens Rbar-numgens S:0_S}}|(vars S), DegreeMap => d -> drop(d, 1));
pdegD := gens gb presentation degD;
origVarsInRbar := support sub(vars S, Rbar);
ind := select(toList(0..numcols pdegD-1), i -> isSubset(support pdegD_{i}, origVarsInRbar));
M := coker mapback pdegD_ind;
phi := map(M,module(I^D), mapback matrix inducedMap(degD,zIdealD));
if isHomogeneous I and isHomogeneous a then assert(isHomogeneous phi);
assert(isWellDefined phi);
extendIdeal phi
)
integralClosure(Ideal, RingElement, ZZ) := opts -> (I,a,D) -> (
S := ring I;
if a % I != 0 then error "The ring element should be an element of the ideal.";
if ((ideal 0_S):a) != 0 then error "The given ring element must be a nonzerodivisor of the ring.";
Sbar := integralClosure S;
Ibar := if Sbar === S then I else S.icMap I;
abar := if Sbar === S then a else S.icMap a;
Ibar = trim Ibar;
J := integralClosureOfIdeal(Ibar, abar, D, opts); -- J is now an ideal in Sbar.
-- now we need to take preimage in S, if needed.
if Sbar === S then trim J else trim preimage(S.icMap, J)
)
integralClosure(Ideal,ZZ) := Ideal => o -> (I,D) -> integralClosure(I, I_0, D, o)
integralClosure(Ideal,RingElement) := Ideal => o -> (I,a) -> integralClosure(I, a, 1, o)
integralClosure(Ideal) := Ideal => o -> I -> integralClosure(I, I_0, 1, o)
-*
Theorem (Saito): If R is a formal power series ring over a field of char 0,
and f\in R has isolated singularity, then f is contained in j(f), the Jacobian ideal iff f is
quasi-homogeneous after a change of variables.
Theorem (Lejeune-Teisser?; see Swanson-Huneke Thm 7.1.5)
f \in integral closure(ideal apply(numgens R,i-> x_i*df/dx_i))
Conjecture (Huneke: f is never a minimal generator of the integral closure of
ideal apply(numgens R,i-> df/dx_i).
*-
jacobian RingElement := Matrix => f -> jacobian ideal f
testHunekeQuestion = method()
testHunekeQuestion RingElement := Boolean => f -> (
R := ring f;
mm := ideal vars R;
j := ideal jacobian f;
if f % (j+mm*f) == 0 then (
<< "power series is crypto-quasi-homogeneous"< R_i*j_i);
J' := integralClosure j';
if f % (mm*f+ mm*integralClosure j) == 0 then return "yes";
)
extendIdeal = method()
extendIdeal(Matrix) := Ideal => phi -> ( --This method is WRONG on integralClosure ideal"a2,b2".
--input: f: (module I) --> M, an inclusion from an ideal
--to a module that is isomorphic to the inclusion of I into an ideal J containing I.
--output: the ideal J, so that f becomes the inclusion I subset J.
inc := transpose gens source phi;
phi0 := transpose matrix phi;
sz := syz transpose presentation target phi;
(q,r) := quotientRemainder(inc,phi0*sz);
if r !=0 then error "phi is not isomorphic to an inclusion of ideals";
trim ideal (sz*q)
)
basisOfDegreeD = method()
basisOfDegreeD (List,Ring) := Matrix => (L,R) ->(
--assumes degrees of R are non-negative
--change to a heft value sometime.
PL := positions(L, d-> d=!=null);
PV := positions(degrees R, D->any(PL,i->D#i > 0));
PVars := (gens ambient R)_PV;
PDegs := PVars/degree/(D->D_PL);
kk := ultimate(coefficientRing, R);
R1 := kk(monoid[PVars,Degrees =>PDegs]);
back := map(R,R1,PVars);
g := back basis(L_PL, R1);
map(target g,,g)
)
-- MES TODO: this function needs to be documented. I don't know what it is really doing?
-- I have un-exported this function.
integralClosures = method (Options => options integralClosure)
integralClosures(Ideal) := opts -> I -> (
-- input: ideal I in an affine ring S
-- output:
S := ring I;
z := local z;
w := local w;
t := local t;
A := tensor(coefficientRing(S)[t],S,Join=>false);
IA := sub(I,A);
ReesI := (flattenRing reesAlgebra(IA,Variable =>z))_0;
fracs := icFractions ReesI;
phi := map(frac(A),frac(ReesI),gens(A_0*IA)|vars A);
newfracs := delete((frac A)_0, fracs/phi);
-- The following two lines remove powers of t, and returns a hashtable
L := partition(f -> degree(A_0, numerator f), newfracs);
toFracS := map(frac S, frac A, {0} | gens frac S);
result := hashTable apply(keys L, d -> d => apply(L#d, f -> toFracS(f // (A_0)^d)));
result
)
----------------------------------------
-- Canonical ideal, makeS2 --------
----------------------------------------
parametersInIdeal = method()
parametersInIdeal Ideal := I -> (
--first find a maximal system of parameters in I, that is, a set of
--c = codim I elements generating an ideal of codimension c.
--assumes ring I is affine.
--routine is probabilistic, often fails over ZZ/2, returns null when it fails.
R := ring I;
c := codim I;
G := sort(gens I, DegreeOrder=>Ascending);
s := 0; -- elements of G_{0..s-1} are already a sop (codim s)
while s (
--tries to find a canonical ideal in R. Note that if R is
--not generically Gorenstein, then it has no canonical ideal!
--This routine is
--guaranteed to work if R is a domain; if R is merely reduced,
--or just generically Gorenstein, it may fail. If it fails,
--it returns null
(S,f) := flattenRing R;
P := ideal S;
SS := ring P;
n := numgens SS;
c := codim P;
WSS := prune Ext^c(SS^1/P, SS);
WS := prune coker (map(S,SS)) (presentation WSS);
H := Hom(WS, S^1);
toIdeal := homomorphism H_{0};
if ker toIdeal != 0 then return null;
trim ideal f^-1 (image toIdeal))
canonicalIdeal = method()
canonicalIdeal Ring := R -> (
--try to find a canonical ideal in R by the probabilistic method.
--If you fail, try the method of canonicalIdeal1
if degreeLength R =!= 1 or any(degrees R, x -> first x <= 0) then
return canonicalIdeal1 R; -- problems with parametersInIdeal prevent its use yet
(S,f) := flattenRing R;
P := ideal S;
J := parametersInIdeal P;
if J === null then return canonicalIdeal1 R;
Jp := J:P;
trim (f^-1) promote(Jp,S)
)
makeS2 = method(Options=>{
Variable => "w",
Verbosity => 0})
makeS2 Ring := o -> R -> (
--try to find the S2-ification of a domain (or more generally an
--unmixed, generically Gorenstein ring) R.
-- Input: R, an affine ring
-- Output: (like "idealizer") a sequence whose
-- first element is a map of rings from R to its S2-ification,
--and whose second element is a list of the fractions adjoined
--to obtain the S2-ification.
-- Uses the method of Vasconcelos, "Computational Methods..." p. 161, taking the idealizer
--of a canonical ideal.
--Assumes that first element of canonicalIdeal R is a nonzerodivisor; else returns error.
--CAVEAT:
--If w_0 turns out to be a zerodivisor
--then we should replace it with a general element of w. But if things
--are multiply graded this might involve finding a degree with maximal heft
--or some such. How should this be done?? There should be a "general element"
--routine...
w := canonicalIdeal R;
if w === null then return null;
if ideal(0_R):w_0 == 0 then idealizer(w,w_0,Variable=>makeVariable o)
else (
return null;
error"first generator of the canonical ideal was a zerodivisor"
)
)
-*
S2 = method() -- from Eisenbud's CompleteIntersectionResolutions.m2
S2(ZZ,Module) := Matrix => (b,M)-> (
--returns a map M --> M', where M' = \oplus_{d>=b} H^0(\tilde M).
--the map is equal to the S2-ification AT LEAST in degrees >=b.
S := ring M;
r:= regularity M;
if b>r+1 then return id_(truncate(b,M));
tbasis := basis(r+1-b,S^1); --(vars S)^[r-b];
t := map(S^1, module ideal tbasis, tbasis);
s:=Hom(t,M)
--could truncate source and target; but if we do it with
--the following line then we get subquotients AND AN ERROR!
-- inducedMap(truncate(b,target s),truncate(b,source s),s)
)
TEST ///--of S2
S = ZZ/101[a,b,c];
M = S^1/intersect(ideal"a,b", ideal"b,c",ideal"c,a");
assert( (hf(-7..1,coker S2(-5,M))) === (0, 3, 3, 3, 3, 3, 3, 2, 0))
makeS2 (S/intersect(ideal"a,b", ideal"b,c",ideal"c,a"))
-- 'betti' no longer accepts non-free modules
--assert( (betti prune S2(-5,M)) === new BettiTally from {(0,{-6},-6) => 3, (1,{0},0) => 1} )
///
*-
--------------------------------------------------------------------
TOOSLOW = method()
TOOSLOW String := (str) -> null
beginDocumentation()
--StartWithOneMinor, "vasconcelos",RadicalCodim1,AllCodimensions,SimplifyFractions
--radical(J, Unmixed)
doc ///
Key
IntegralClosure
Headline
routines for integral closure of affine domains and ideals
Description
Text
This package contains several algorithms for computing the
integral closure (i.e. normalization) of an affine domain,
and also of an ideal.
The basic use of this package is shown in the following example.
Example
R = QQ[x,y,z]/(x^3-x^2*z^5-z^2*y^5)
S = integralClosure R
describe S
Text
Use @TO icFractions@ to see what fractions have been added.
Example
icFractions R
Text
Look at the ideal of S or the generators of S to see the structure of the
integral closure.
Example
gens S
trim ideal S
Text
The integral closure of an ideal can be computed as follows.
Example
use R
I = ideal(y,z)
integralClosure I
Text
Integral closures of powers of ideals can be computed in a more efficient manner than
using e.g. {\tt integralClosure(I^d)}, by using e.g. {\tt integralClosure(I,d)}.
Example
integralClosure(I^2)
integralClosure(I, 2)
integralClosure(I, 3) == integralClosure(I^3)
Text
If the characteristic is positive, yet small compared to the degree, but the
fraction ring is still separable over a subring, then use
@TO icFracP@, which is an implementation of an algorithm due to
Leonard-Pellikaan, and modified by Singh-Swanson (see arXiv:0901.0871).
However, the interface to this routine is likely to change in future
releases to more closely match the functions above.
The method used by integralClosure is a modification of the basic
algorithm explained in Theo De Jong's paper {\em An Algorithm for
Computing the Integral Closure}, J. Symbolic Computation,
(1998) 26, 273-277.
///
doc ///
Key
integralClosure
Headline
integral closure of an ideal or a domain
///
doc ///
Key
isNormal
(isNormal, Ring)
Headline
determine if a reduced ring is normal
Usage
isNormal R
Inputs
R:Ring
a reduced equidimensional ring
Outputs
:Boolean
whether {\tt R} is normal, that is, whether it satisfies
Serre's conditions S2 and R1
Description
Text
This function computes the jacobian of the ring which can be costly for
larger rings. Therefore it checks the less costly S2 condition first and if
true, then tests the R1 condition using the jacobian of {\tt R}.
Example
R = QQ[x,y,z]/ideal(x^6-z^6-y^2*z^4);
isNormal R
isNormal(integralClosure R)
Caveat
The ring {\tt R} must be an equidimensional ring. If {\tt R} is a domain,
then sometimes computing the integral closure of {\tt R} can be faster than
this test.
SeeAlso
integralClosure
makeS2
///
doc ///
Key
(integralClosure, Ring)
Headline
compute the integral closure (normalization) of an affine domain
Usage
R' = integralClosure R
Inputs
R:Ring
a quotient of a polynomial ring over a field
Keep => List
of variables of R
Limit => ZZ
Variable => Symbol
Verbosity => ZZ
Strategy => List
of some of the symbols: AllCodimensions, Radical, RadicalCodim1,
Vasconcelos, StartWithOneminor, SimplifyFractions
Outputs
R':Ring
the integral closure of {\tt R}
Consequences
Item
The inclusion map $R \rightarrow R'$
can be obtained with @TO icMap@.
Item
The fractions corresponding to the variables
of the ring {\tt R'} can be found with @TO icFractions@
Description
Text
The integral closure of a domain is the subring of the fraction field
consisting of all fractions integral over the domain. For example,
Example
R = QQ[x,y,z]/ideal(x^6-z^6-y^2*z^4-z^3);
R' = integralClosure R
gens R'
icFractions R
icMap R
I = trim ideal R'
Text
Sometimes using @TO trim@ provides a cleaner set of generators.
Text
If $R$ is not a domain, first decompose it, and collect all of the
integral closures.
Example
S = ZZ/101[a..d]/ideal(a*(b-c),c*(b-d),b*(c-d));
C = decompose ideal S
Rs = apply(C, I -> (ring I)/I);
Rs/integralClosure
oo/prune
Text
This function is roughly based on
Theo De Jong's paper, {\em An Algorithm for
Computing the Integral Closure}, J. Symbolic Computation,
(1998) 26, 273-277. This algorithm is similar to the round two
algorithm of Zassenhaus in algebraic number theory.
Text
There are several optional parameters which allows the user to control
the way the integral closure is computed. These options may change
in the future.
Caveat
This function requires that the degree of the field extension
(over a pure transcendental subfield) be greater
than the characteristic of the base field. If not, use @TO icFracP@.
This function requires that the ring be finitely generated over a ring. If not (e.g.
if it is f.g. over the integers), then the result is integral, but not necessarily
the entire integral closure. Finally, if the ring is not a domain, then
the answers will often be incorrect, or an obscure error will occur.
SeeAlso
icMap
icFractions
conductor
icFracP
///
doc ///
Key
(integralClosure, Ring, Ring)
Headline
compute the integral closure (normalization) of an affine reduced ring over a base ring
Usage
R' = integralClosure(R, A)
Inputs
R:Ring
a quotient of a polynomial ring ultimately over a field
A:Ring
a base ring of $R$ (one of its coefficient rings)
Keep => List
of variables of R
Limit => ZZ
Variable => Symbol
Verbosity => ZZ
Strategy => List
of some of the symbols: AllCodimensions, Radical, RadicalCodim1,
Vasconcelos, StartWithOneminor, SimplifyFractions
Outputs
R':Ring
the integral closure of $R$, having coefficient ring $A$
Consequences
Item
The inclusion map $R \rightarrow R'$
can be obtained with @TO icMap@.
Item
The fractions corresponding to the variables
of the ring {\tt R'} can be found with @TO icFractions@
Description
Text
This function packages the output integral closure in the desired way.
For more details about integral closure, see @TO (integralClosure, Ring)@.
In the following example, there are three possible coefficient rings for $R$: $R$, $A$ and ${\mathbb Q}$.
Example
A = QQ[x,y]/(x^3-y^2)
R = reesAlgebra(ideal(x*y,y^2), Variable => z)
coefficientRing R
describe R
Example
R' = integralClosure(R, R)
describe R'
icMap R
fracs1 = icFractions R
Example
R'' = integralClosure(R, A)
describe R''
icMap R
fracs2 = icFractions R
assert(fracs1 == fracs2)
Example
R''' = integralClosure(R, QQ)
describe R'''
icMap R
fracs3 = icFractions R
assert(fracs1 == fracs3)
Text
Note that the second and third calls to {\tt integralClosure} changes the output of {\tt icMap}
but the fractions are the same.
Caveat
All the caveats of @TO (integralClosure, Ring)@ are in effect and the output of @TO icMap@
changes upon each call to this function.
SeeAlso
(integralClosure, Ring)
icMap
icFractions
///
--StartWithOneMinor, "vasconcelos",RadicalCodim1,AllCodimensions,SimplifyFractions
doc ///
Key
[integralClosure, Keep]
Headline
list ring generators which should not be simplified away
Usage
integralClosure(R, Keep=>L)
Inputs
L:List
a list of variables in the ring R, or {\tt null} (the default).
Consequences
Item
The given list of variables (or all of the outer generators, if L is null)
will be generators of the integral closure
Description
Text
Consider the cuspidal cubic, and three different possibilities for {\tt Keep}.
Example
R = QQ[x,y]/ideal(x^3-y^2);
R' = integralClosure(R, Variable => symbol t)
trim ideal R'
Example
R = QQ[x,y]/ideal(x^3-y^2);
R' = integralClosure(R, Variable => symbol t, Keep => {x})
trim ideal R'
Example
R = QQ[x,y]/ideal(x^3-y^2);
integralClosure(R, Variable => symbol t, Keep => {})
///
doc ///
Key
[integralClosure, Variable]
Headline
set the base letter for the indexed variables introduced while computing the integral closure
Usage
integralClosure(R, Variable=>x)
Inputs
x:Symbol
Consequences
Item
The new variables will be subscripted using {\tt x}.
Description
Example
R = QQ[x,y,z]/ideal(x^6-z^6-y^2*z^4-z^3);
R' = integralClosure(R, Variable => symbol t)
trim ideal R'
Text
The algorithm works in stages, each time adding new fractions to the ring.
A variable {\tt t_(3,0)} represents the first (zero-th) variables added at stage 3.
Caveat
The base name should be a symbol
The variables added may be changed to {\tt t_1, t_2, ...} in the future.
///
doc ///
Key
[integralClosure,Limit]
Headline
do a partial integral closure
Usage
integralClosure(R, Limit => n)
Inputs
n:ZZ
how many steps to perform
Description
Text
The integral closure algorithm proceeds by finding a suitable ideal $J$,
and then computing $Hom_R(J,J)$, and repeating these steps. This
optional argument limits the number of such steps to perform.
The result is an integral extension, but is not necessarily integrally closed.
Example
R = QQ[x,y,z]/ideal(x^6-z^6-y^2*z^4-z^3);
R' = integralClosure(R, Variable => symbol t, Limit => 2)
trim ideal R'
icFractions R
///
doc ///
Key
[integralClosure,Verbosity]
Headline
display a certain amount of detail about the computation
Usage
integralClosure(R, Verbosity => n)
Inputs
n:ZZ
The higher the number, the more information is displayed. A value
of 0 means: keep quiet.
Description
Text
When the computation takes a considerable time, this function can be used to
decide if it will ever finish, or to get a feel for what is happening
during the computation.
Example
R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3);
time R' = integralClosure(R, Verbosity => 2)
trim ideal R'
icFractions R
Caveat
The exact information displayed may change.
///
doc ///
Key
[integralClosure,Strategy]
Headline
control the algorithm used
Usage
integralClosure(R, Strategy=>L)
Inputs
L:List
of a subset of the following: {\tt RadicalCodim1, Radical, AllCodimensions, Vasconcelos, SimplifyFractions, StartWithOneMinor}
Description
Text
Overall, the default options are the best. However, sometimes one of these is dramatically
better (or worse!). For the examples here, one doesn't notice much difference.
{\tt RadicalCodim1} chooses an alternate, often much faster, sometimes much slower,
algorithm for computing the radical of ideals. This will often produce a different
presentation for the integral closure. {\tt Radical} chooses yet another such algorithm.
{\tt AllCodimensions} tells the algorithm to bypass the computation of the
S2-ification, but in each iteration of the algorithm, use the radical of
the extended Jacobian ideal from the previous step, instead of using only the
codimension 1 components of that. This is useful when for some reason the
S2-ification is hard to compute, or if the probabilistic algorithm for
computing it fails. In general though, this option slows down the computation
for many examples.
{\tt StartWithOneMinor} tells the algorithm to not compute the entire Jacobian ideal,
just find one element in it. This is often a bad choice, unless the ideal is large
enough that one can't compute the Jacobian ideal. In the future, we plan on using
the @TO "FastMinors::FastMinors"@ package to compute part of the Jacobian ideal.
{\tt SimplifyFractions} changes the fractions to hopefully be simpler. Sometimes it
succeeds, yet sometimes it makes the fractions worse. This is because of the manner
in which fraction fields work. We are hoping that in the future, less drastic
change of fractions will happen by default.
{\tt Vasconocelos} tells the routine to instead of computing Hom(J,J),
to instead compute Hom(J^-1, J^-1). This is usually a more time consuming
computation, but it does potentially get to the answer in a smaller number of steps.
Example
S = QQ[x,y,z]
f = ideal (x^8-z^6-y^2*z^4-z^3)
R = S/f
time R' = integralClosure R
netList (ideal R')_*
icFractions R
Example
S = QQ[x,y,z]
f = ideal (x^8-z^6-y^2*z^4-z^3)
R = S/f
time R' = integralClosure(R, Strategy => Radical)
netList (ideal R')_*
icFractions R
Example
S = QQ[x,y,z]
f = ideal (x^8-z^6-y^2*z^4-z^3)
R = S/f
time R' = integralClosure(R, Strategy => AllCodimensions)
netList (ideal R')_*
Example
S = QQ[x,y,z]
f = ideal (x^8-z^6-y^2*z^4-z^3)
R = S/f
time R' = integralClosure(R, Strategy => SimplifyFractions)
netList (ideal R')_*
Example
S = QQ[x,y,z]
f = ideal (x^8-z^6-y^2*z^4-z^3)
R = S/f
time R' = integralClosure (R, Strategy => RadicalCodim1)
netList (ideal R')_*
Example
S = QQ[x,y,z]
f = ideal (x^8-z^6-y^2*z^4-z^3)
R = S/f
time R' = integralClosure (R, Strategy => Vasconcelos)
netList (ideal R')_*
Example
S = QQ[a,b,c,d]
f = monomialCurveIdeal(S,{1,3,4})
R = S/f
time R' = integralClosure R
netList (ideal R')_*
Text
Rational Quartic
Example
S = QQ[a,b,c,d]
I = monomialCurveIdeal(S,{1,3,4})
R = S/I
time R' = integralClosure(R, Strategy => Radical)
icFractions R
Example
S = QQ[a,b,c,d]
I = monomialCurveIdeal(S,{1,3,4})
R = S/I
time R' = integralClosure(R, Strategy => AllCodimensions)
icFractions R
Example
S = QQ[a,b,c,d]
I = monomialCurveIdeal(S,{1,3,4})
R = S/I
time R' = integralClosure (R, Strategy => RadicalCodim1)
icFractions R
Example
S = QQ[a,b,c,d]
I = monomialCurveIdeal(S,{1,3,4})
R = S/I
time R' = integralClosure (R, Strategy => Vasconcelos)
icFractions R
Text
Projected Veronese
Example
S' = QQ[symbol a .. symbol f]
M' = genericSymmetricMatrix(S',a,3)
I' = minors(2,M')
center = ideal(b,c,e,a-d,d-f)
S = QQ[a,b,c,d,e]
p = map(S'/I',S,gens center)
I = kernel p
betti res I
R = S/I
time R' = integralClosure(R, Strategy => Radical)
icFractions R
Example
S' = QQ[a..f]
M' = genericSymmetricMatrix(S',a,3)
I' = minors(2,M')
center = ideal(b,e,a-d,d-f)
S = QQ[a,b,d,e]
p = map(S'/I',S,gens center)
I = kernel p
betti res I
R = S/I
time R' = integralClosure(R, Strategy => Radical)
icFractions R
Example
S = QQ[a,b,d,e]
R = S/sub(I,S)
time R' = integralClosure(R, Strategy => AllCodimensions)
icFractions R
Example
S = QQ[a,b,d,e]
R = S/sub(I,S)
time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
icFractions R
Example
S = QQ[a,b,d,e]
R = S/sub(I,S)
time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
icFractions R
Text
One can give several of these options together. Although note that only one
of {\tt AllCodimensions}, {\tt RadicalCodim1}, {\tt Radical} will be used.
Example
S = QQ[a,b,d,e]
R = S/sub(I,S)
time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
icFractions R
ideal R'
Caveat
The list of strategies may change in the future!
///
--mes--
--StartWithOneMinor, "vasconcelos",RadicalCodim1,AllCodimensions,SimplifyFractions
-- Example
-- S = QQ[x,y]
-- f = ideal (y^4-2*x^3*y^2-4*x^5*y+x^6-x^7)
-- R = S/f
-- --time R' = integralClosure (R, Strategy => StartWithOneMinor)
-- icFractions R
-- Example
-- S = QQ[a,b,c,d]
-- I = monomialCurveIdeal(S,{1,3,4})
-- R = S/I
-- time R' = integralClosure (R, Strategy => StartWithOneMinor)
-- icFractions R
-- Example
-- S = QQ[a,b,c,d]
-- I = monomialCurveIdeal(S,{1,3,4})
-- R = S/I
-- time R' = integralClosure(R, Strategy => SimplifyFractions)
-- icFractions R
-- Example
-- S = QQ[a,b,d,e]
-- R = S/sub(I,S)
-- time R' = integralClosure (R, Strategy => StartWithOneMinor)
-- icFractions R
-- Example
-- S = QQ[a,b,d,e]
-- R = S/sub(I,S)
-- time R' = integralClosure(R, Strategy => SimplifyFractions)
-- icFractions R
-- The use of Denominator isn't working well yet.
-- XXX
-- time R' = integralClosure(R, Denominator => x*(x+4)) -- crash!
-- time R' = integralClosure(R, Denominator => x*(x+4), Verbosity => 2) -- crash!
-- time R' = integralClosure(R, Denominator => x, Verbosity => 2)
-- time R' = integralClosure(R, Denominator => x+4, Verbosity => 2)
doc ///
Key
(integralClosure, Ideal, RingElement, ZZ)
(integralClosure, Ideal, ZZ)
(integralClosure, Ideal)
(integralClosure, Ideal, RingElement)
Headline
integral closure of an ideal in an affine domain
Usage
integralClosure J
integralClosure(J, d)
integralClosure(J, f)
integralClosure(J, f, d)
Inputs
J:Ideal
f:RingElement
optional, an element of J which is a nonzerodivisor in the ring of J.
If not give, the first generator of {\tt J} is used
d:ZZ
optional, default value 1
Keep => List
unused
Limit => ZZ
unused
Variable => Symbol
symbol used for new variables
Verbosity => ZZ
Strategy => List
of some of the symbols: AllCodimensions, SimplifyFractions, Radical, RadicalCodim1, Vasconcelos.
These are passed on to the computation of the integral closure of the Rees algebra of {\tt J}
Outputs
:Ideal
the integral closure of $J^d$
Description
Text
The method used is described in Vasconcelos' book,
{\em Computational methods in commutative algebra and algebraic
geometry}, Springer, section 6.6. Basically, one first
computes the integral closure of the Rees Algebra of the ideal,
and then one reads off the integral closure of any of the powers
of the ideal, using linear algebra.
Example
S = ZZ/32003[a,b,c];
F = a^2*b^2*c+a^3+b^3+c^3
J = ideal jacobian ideal F
time integralClosure J
time integralClosure(J, Strategy=>{RadicalCodim1})
J2' = integralClosure(J,2)
Text
Sometimes it is useful to give the specific nonzerodivisor $f$ in the ideal.
Example
assert(integralClosure(J, J_2, 2) == J2')
Caveat
It is usually much faster to use {\tt integralClosure(J,d)}
rather than {\tt integralClosure(J^d)}.
Also, the element {\tt f} (or the first generator of {\tt J}, if {\tt f} is not given)
must be a nonzero divisor in the ring. This is not checked.
SeeAlso
(integralClosure,Ring)
reesAlgebra
testHunekeQuestion
///
doc ///
Key
idealizer
(idealizer, Ideal, RingElement)
[idealizer, Strategy]
[idealizer, Verbosity]
Headline
compute Hom(I,I) as a quotient ring
Usage
(F,G) = idealizer(I,f)
Inputs
I:Ideal
whose endomorphism ring we'll compute
f:RingElement
a nonzerodivisor in $I$
Variable:Symbol
Index:ZZ
Strategy => List
possible elements include ``Vasconcelos''
Verbosity => ZZ
larger numbers give more information
Outputs
F:RingMap
The inclusion map from $R$ into $S = Hom_R(I,I)$
G:RingMap
$frac S \rightarrow frac R$, giving the fractions
corresponding to each generator of $S$.
Description
Text
The idealizer of $I$, computed as target F,
is the largest subring of the fraction field of ring I in which $I$ is
still an ideal. Note that this is NOT the common use of the term
in commutative algebra.
This is a key subroutine used in the computation of
integral closures.
Example
R = QQ[x,y]/(y^3-x^7)
I = ideal(x^2,y^2)
(F,G) = idealizer(I,x^2);
target F
first entries G.matrix
SeeAlso
ringFromFractions
integralClosure
///
document {
Key => [makeS2,Variable],
Headline=> "Sets the name of the indexed variables introduced in computing
the S2-ification."
}
document {
Key => [idealizer,Variable],
Headline=> "Sets the name of the indexed variables introduced in computing
the endomorphism ring Hom(J,J)."
}
document {
Key => Index,
Headline => "Optional input for idealizer",
PARA{},
"This option allows the user to select the starting index for the
new variables added in computing Hom(J,J) as a ring. The default
value is 0 and is what most users will use. The option is needed
for the iteration implemented in integralClosure."
}
document {
Key => [idealizer, Index],
Headline => "Sets the starting index on the new variables used to build the endomorphism ring Hom(J,J)",
"If the program idealizer is
used independently, the user will generally want to use the
default value of 0. However, when used as part of the
integralClosure computation the number needs to start higher
depending on the level of recursion involved. "
}
doc ///
Key
icMap
(icMap,Ring)
Headline
natural map from an affine domain into its integral closure
Usage
f = icMap R
Inputs
R:Ring
an affine domain
Outputs
f:RingMap
from {\tt R} to its integral closure
Description
Text
If the integral closure of {\tt R} has not yet been computed,
that computation is performed first. No extra computation
is involved. If {\tt R} is integrally closed, then the identity
map is returned.
Example
R = QQ[x,y]/(y^2-x^3)
f = icMap R
isWellDefined f
source f === R
describe target f
Text
This finite ring map can be used to compute the conductor,
that is, the ideal of elements of {\tt R} which are
universal denominators for the integral closure (i.e. those d \in R
such that d R' \subset R).
Example
S = QQ[a,b,c]/ideal(a^6-c^6-b^2*c^4);
F = icMap S;
conductor F
Caveat
If you want to control the computation of the integral closure via optional
arguments, then make sure you call @TO (integralClosure,Ring)@ first, since
{\tt icMap} does not have optional arguments.
SeeAlso
(integralClosure,Ring)
conductor
///
doc ///
Key
icFractions
(icFractions, Ring)
Headline
fractions integral over an affine domain
Usage
icFractions R
Inputs
R:Ring
an affine domain
Outputs
:List
a list of fractions over {\tt R}, generating the
integral closure of {\tt R}, as an {\tt R}-algebra.
Description
Text
If the integral closure of {\tt R} has not yet been computed,
that computation is performed first. No extra computation
is then involved to find the fractions.
Example
R = QQ[x,y,z]/ideal(x^6-z^6-y^2*z^4);
icFractions R
R' = integralClosure R
gens R'
netList (ideal R')_*
Text
Notice that the $i$-th fraction corresponds to the $i$-th generator
of the integral closure. For instance, the variable $w_(3,0) = {x^2 \over z}$.
Caveat
(a) Currently in Macaulay2, fractions over quotients of polynomial rings
do not have a nice normal form. In particular, sometimes
the fractions are `simplified' to give much nastier looking fractions.
We hope to improve this.
(b)
If you want to control the computation of the integral closure via optional
arguments, then make sure you call @TO (integralClosure,Ring)@ first, since
{\tt icFractions} does not have optional arguments.
SeeAlso
integralClosure
icMap
///
doc ///
Key
conductor
(conductor,RingMap)
(conductor,Ring)
Headline
the conductor of a finite ring map
Usage
conductor F
conductor R
Inputs
F:RingMap
$R \rightarrow S$, a finite map with $R$ an affine reduced ring
R:Ring
an affine domain. In this case, $F : R \rightarrow S$ is the
inclusion map of $R$ into the integral closure $S$
Outputs
:Ideal
of $R$ consisting of all $d \in R$ such that $dS \subset F(R)$
Description
Text
Suppose that the ring map $F : R \rightarrow S$ is finite: i.e. $S$ is a finitely
generated $R$-module. The conductor of $F$ is defined to be
$\{ g \in R \mid g S \subset F(R) \}$.
One way to think
about this is that the conductor is the set of universal denominators
of {\tt S} over {\tt R}, or as the largest ideal of {\tt R}
which is also an ideal in {\tt S}. An important case is the
conductor of the map from a ring to its integral closure.
Example
R = QQ[x,y,z]/ideal(x^7-z^7-y^2*z^5);
icFractions R
F = icMap R
conductor F
Text
If an affine domain (a ring finitely generated over a field) is given as input,
then the conductor of $R$ in its integral closure is returned.
Example
conductor R
Text
If the map is not {\tt icFractions(R)}, then @TO pushForward@ is called to compute
the conductor.
Caveat
Currently this function only works if {\tt F} comes from a
integral closure computation, or is homogeneous
SeeAlso
integralClosure
icFractions
icMap
pushForward
///
doc ///
Key
ringFromFractions
(ringFromFractions,Matrix,RingElement)
[ringFromFractions,Variable]
[ringFromFractions,Index]
[ringFromFractions,Verbosity]
Headline
find presentation for f.g. ring
Usage
(F,G) = ringFromFractions(H,f)
Inputs
H:Matrix
a one row matrix over a ring $R$
f:RingElement
Variable => Symbol
name of symbol used for new variables
Index => ZZ
the starting index for new variables
Verbosity => ZZ
values up to 6 are implemented. Larger values show more output.
Outputs
F:RingMap
$R \rightarrow S$, where $S$ is the extension ring
of $R$ generated by the fractions $1/f H$
G:RingMap
$frac S \rightarrow frac R$, the fractions
Description
Text
Serious restriction: It is assumed that this ring R[1/f H] is an endomorphism ring
of an ideal in $R$. This means that the Groebner basis, in a product order,
will have lead terms all quadratic monomials in the new variables,
together with other elements which are degree 0 or 1 in the new variables.
Example
R = QQ[x,y]/(y^2-x^3)
H = (y * ideal(x,y)) : ideal(x,y)
(F,G) = ringFromFractions(((gens H)_{1}), H_0);
S = target F
F
G
///
doc ///
Key
makeS2
(makeS2,Ring)
[makeS2, Verbosity]
Headline
compute the S2ification of a reduced ring
Usage
(F,G) = makeS2 R
Inputs
R:Ring
an equidimensional reduced (or just unmixed and genericaly Gorenstein) affine ring
Verbosity => ZZ
larger values give more information.
Outputs
F:RingMap
$R \rightarrow S$, where $S$ is the so-called S2-ification of $R$
G:RingMap
$frac S \rightarrow frac R$, giving the corresponding fractions
Description
Text
A ring $S$ satisfies Serre's S2 condition if every codimension 1 ideal
contains a nonzerodivisor and every principal ideal generated by a nonzerodivisor
is equidimensional of codimension one. If $R$ is an affine reduced ring,
then there is a unique smallest extension $R\subset S\subset {\rm frac}(R)$ satisfying S2,
and $S$ is finite as an $R$-module.
Uses the method of Vasconcelos, "Computational Methods..." p. 161, taking the idealizer
of a canonical ideal.
There are other methods to compute $S$, not currently implemented in this package. See
for example the function (S2,Module) in the package "CompleteIntersectionResolutions".
We compute the S2-ification of the rational quartic curve in $P^3$
Example
A = ZZ/101[a..d];
I = monomialCurveIdeal(A,{1,3,4})
R = A/I;
(F,G) = makeS2 R
Caveat
Assumes that first element of canonicalIdeal R is a nonzerodivisor; else returns error.
The return value of this function is likely to change in the future
SeeAlso
integralClosure
///
doc ///
Key
testHunekeQuestion
(testHunekeQuestion, RingElement)
Headline
tests a conjecture on integral closures strengthening the Eisenbud-Mazur conjecture
Usage
B = testHunekeQuestion f
Inputs
f:RingElement
Outputs
B:Boolean
whether f the answer to the question is yes for f
Description
Text
Background:
Theorem (Saito): If R is a formal power series ring over a field of char 0,
and f \in R is a power series with an isolated singularity,
then f\in j(f), the Jacobian ideal iff f becomes
quasi-homogeneous after a change of variables.
This can be tested over an affine ring by testing f % (j(f)+ideal vars S).
If the result is 0 we call f crypto-quasi-homogeneous.
Theorem (Lejeune-Teisser; see Swanson-Huneke Thm 7.1.5)
f \in integral closure(ideal apply(numgens R,i-> x_i*df/dx_i))
Question (Huneke): Is f actually contained in the maximal ideal
times the integral closure of
ideal apply(numgens R,i-> df/dx_i).
Note that the answer is trivially yes if f is crypto-quasi-homogeneous.
Huneke has shown that if the answer is always yes, then the Eisenbud-Mazur conjecture
on evolutions is true.
Example
R = QQ[x,y,z]
f = random(3,R)+random(4,R)+random(5,R)
testHunekeQuestion f
Text
The function y^4-2*x^3*y^2-4*x^5*y+x^6-x^7 is defines the simplest plane curve
singularity with 2 characteristic pairs, and is thus NOT crypto- quasi-homogeneous.
Example
R = QQ[x,y]
f = (y^4-2*x^3*y^2-4*x^5*y+x^6-x^7)
testHunekeQuestion f
SeeAlso
(integralClosure, Ideal)
///
document {
Key => {icFracP, (icFracP, Ring)},
Headline => "compute the integral closure in prime characteristic",
Usage => "icFracP R, icFracP(R, ConductorElement => D), icFracP(R, Limit => N), icFracP(R, Verbosity => ZZ)",
Inputs => {
"R" => {"that is reduced, equidimensional,
finitely and separably generated over a field of characteristic p"},
ConductorElement => {"optionally provide a non-zerodivisor conductor element ",
TT "ConductorElement => D", ";
the output is then the module generators of the integral closure.
A good choice of ", TT "D", " may speed up the calculations?"},
Limit => {"if value N is given, perform N loop steps only"},
Verbosity => {"if value is greater than 0, report the conductor element and number of steps in the loop"},
},
Outputs => {{"The module generators of the integral closure of ", TT "R",
" in its total ring of fractions. The generators are
given as elements in the total ring of fractions."}
},
"Input is an equidimensional reduced ring in characteristic p
that is finitely and separably generated over the base field.
The output is a finite set of fractions that generate
the integral closure as an ", TT "R", "-module.
An intermediate step in the code
is the computation of a conductor element ", TT "D",
" that is a non-zerodivisor;
its existence is guaranteed by the separability assumption.
The user may supply ", TT "D",
" with the optional ", TT "ConductorElement => D", ".
(Sometimes, but not always, supplying ", TT "D", " speeds up the computation.)
In any case, with the non-zero divisor ", TT "D", ",
the algorithm starts by setting the initial approximation of the integral closure
to be the finitely generated ", TT "R", "-module
", TT "(1/D)R", ",
and in the subsequent loop the code recursively constructs submodules.
Eventually two submodules repeat;
the repeated module is the integral closure of ", TT "R", ".
The user may optionally provide ", TT "Limit => N", " to stop the loop
after ", TT "N", " steps,
and the optional ", TT "Verbosity => 1", " reports the conductor
element and the number of steps it took for the loop to stabilize.
The algorithm is based on the
Leonard--Pellikaan--Singh--Swanson algorithm.",
PARA{},
"A simple example.",
EXAMPLE {
"R = ZZ/5[x,y,z]/ideal(x^6-z^6-y^2*z^4);",
"icFracP R"
},
"The user may provide an optional non-zerodivisor conductor element ",
TT "D",
". The output generators need not
be expressed in the form with denominator ", TT "D", ".",
EXAMPLE {
"R = ZZ/5[x,y,u,v]/ideal(x^2*u-y^2*v);",
"icFracP(R)",
"icFracP(R, ConductorElement => x)",
},
"In case ", TT "D", " is not in the conductor, the output is ",
TT "V_e = (1/D) {r in R | r^(p^i) in (D^(p^i-1)) ", "for ",
TT "i = 1, ..., e}",
" such that ", TT "V_e = V_(e+1)", " and ", TT "e",
" is the smallest such ", TT "e", ".",
EXAMPLE {
"R=ZZ/2[u,v,w,x,y,z]/ideal(u^2*x^3+u*v*y^3+v^2*z^3);",
"icFracP(R)",
"icFracP(R, ConductorElement => x^2)"
},
"The user may also supply an optional limit on the number of steps
in the algorithm. In this case, the output is a finitely generated ",
TT "R", "-module contained in ", TT "(1/D)R",
" which contains the integral closure (intersected with ", TT "(1/D)R",
".",
EXAMPLE {
"R=ZZ/2[u,v,w,x,y,z]/ideal(u^2*x^3+u*v*y^3+v^2*z^3);",
"icFracP(R, Limit => 1)",
"icFracP(R, Limit => 2)",
"icFracP(R)"
},
"With the option above one can for example determine how many
intermediate modules the program should compute or did compute
in the loop to get the integral closure. A shortcut for finding
the number of steps performed is to supply the ",
TT "Verbosity => 1", " option.",
EXAMPLE {
"R=ZZ/3[u,v,w,x,y,z]/ideal(u^2*x^4+u*v*y^4+v^2*z^4);",
"icFracP(R, Verbosity => 1)"
},
"With this extra bit of information, the user can now compute
integral closures of principal ideals in ", TT "R", " via ",
TO icPIdeal, ".",
SeeAlso => {"icPIdeal", "integralClosure", "isNormal"},
Caveat => "The interface to this algorithm will likely change eventually"
-- Caveat => "NOTE: mingens is not reliable, neither is kernel of the zero map!!!"
}
document {
Key => ConductorElement,
Headline => "Specifies a particular non-zerodivisor in the conductor."
}
document {
Key => [icFracP,ConductorElement],
Headline => "Specifies a particular non-zerodivisor in the conductor.",
"A good choice can possibly speed up the calculations. See ",
TO icFracP, "."
}
document {
Key => [icFracP,Limit],
Headline => "Limits the number of computed intermediate modules."
-- Caveat => "NOTE: How do I make M2 put icFracP on the list of all functions that use Limit?"
}
document {
Key => [icFracP,Verbosity],
Headline => "Prints out the conductor element and
the number of intermediate modules it computed.",
Usage => "icFracP(R, Verbosity => ZZ)",
"The main use of the extra information is in computing the
integral closure of principal ideals in ", TT "R",
", via ", TO icPIdeal,
".",
EXAMPLE {
"R=ZZ/3[u,v,x,y]/ideal(u*x^2-v*y^2);",
"icFracP(R, Verbosity => 1)",
"S = ZZ/3[x,y,u,v];",
"R = S/kernel map(S,S,{x-y,x+y^2,x*y,x^2});",
"icFracP(R, Verbosity => 1)"
},
}
document {
Key => {icPIdeal,(icPIdeal, RingElement, RingElement, ZZ)},
Headline => "compute the integral closure
in prime characteristic of a principal ideal",
Usage => "icPIdeal (a, D, N)",
Inputs => {
"a" => {"an element in ", TT "R"},
"D" => {"a non-zerodivisor of ", TT "R",
" that is in the conductor"},
"N" => {"the number of steps in ", TO icFracP,
" to compute the integral closure of ", TT "R",
", by using the conductor element ", TT "D"}},
Outputs => {{"the integral closure of the ideal ", TT "(a)", "."}},
"The main input is an element ", TT "a",
" which generates a principal ideal whose integral closure we are
seeking. The other two input elements,
a non-zerodivisor conductor element ", TT "D",
" and the number of steps ", TT "N",
" are the pieces of information obtained from ",
TT "icFracP(R, Verbosity => true)",
". (See the Singh--Swanson paper, An algorithm for computing
the integral closure, Remark 1.4.)",
EXAMPLE {
"R=ZZ/3[u,v,x,y]/ideal(u*x^2-v*y^2);",
"icFracP(R, Verbosity => 1)",
"icPIdeal(x, x^2, 3)"
},
SeeAlso => {"icFracP"},
Caveat => "The interface to this algorithm will likely change eventually"
}
doc ///
Key
Keep
Headline
an optional argument for various functions
SeeAlso
(integralClosure,Ring)
(integralClosure,Ideal,ZZ)
///
doc ///
Key
RadicalCodim1
Headline
a symbol denoting a strategy element usable with integralClosure(...,Strategy=>...)
SeeAlso
(integralClosure,Ring)
///
doc ///
Key
Radical
Headline
a symbol denoting a strategy element usable with integralClosure(...,Strategy=>...)
SeeAlso
(integralClosure,Ring)
///
doc ///
Key
AllCodimensions
Headline
a symbol denoting a strategy element usable with integralClosure(...,Strategy=>...)
SeeAlso
(integralClosure,Ring)
///
doc ///
Key
StartWithOneMinor
Headline
a symbol denoting a strategy element usable with integralClosure(...,Strategy=>...)
SeeAlso
(integralClosure,Ring)
///
doc ///
Key
SimplifyFractions
Headline
a symbol denoting a strategy element usable with integralClosure(...,Strategy=>...)
SeeAlso
(integralClosure,Ring)
///
doc ///
Key
Vasconcelos
Headline
a symbol denoting a strategy element usable with integralClosure(...,Strategy=>...)
SeeAlso
(integralClosure,Ring)
///
///
-- This (disabled) test indicates we want to use Normaliz when computing
-- the integral closure if a binomial ideal.
-- disabled: because the last paragraph of 4 commands takes over 10 seconds total.
debug IntegralClosure
setRandomSeed 0
S' = ZZ/101[x,y]
S = S'/ideal(x^3 -y^2)
J = idealInSingLocus S
J' = idealInSingLocus (S,Strategy => {StartWithOneMinor})
assert(J == ideal"x2,y")
assert(numgens J' === 1)
degs = {1,3,4,7}
S = ZZ/101[vars(0..length degs)]
I = monomialCurveIdeal(S,degs)
J = reesIdeal I
R = (ring J)/J
R = first flattenRing reesAlgebra I
isHomogeneous R
elapsedTime Jsing = idealInSingLocus R;
CJsing = decompose ideal gens gb Jsing
elapsedTime R' = integralClosure R
assert(R' === R)
///
-- MES TODO: remove this test, or at least make it a better test.
TEST ///
-*
restart
debug loadPackage("IntegralClosure", Reload => true)
*-
debug IntegralClosure
kk=ZZ/101
S=kk[a,b,c,d]
I=monomialCurveIdeal(S, {3,5,6})
R=S/I
K = ideal(b,c)
f=b*d
vasconcelos(K, f)
endomorphisms(K, f)
codim K
R1=ringFromFractions vasconcelos(K,f)
R2=ringFromFractions endomorphisms(K,f)
betti res I -- NOT depth 2.
time integralClosure(S/I, Strategy => {Vasconcelos})
time integralClosure(S/I, Strategy => {})
makeS2 R
///
-- MES TODO: remove this test, or at least make it a better test.
TEST ///
-*
restart
debug loadPackage("IntegralClosure", Reload => true)
*-
debug IntegralClosure
kk=ZZ/101
S=kk[a,b,c,d]
I=monomialCurveIdeal(S, {3,5,6})
M=jacobian I
D = randomMinors(2,2,M)
R=S/I
J = trim substitute(ideal D ,R)
vasconcelos (J, J_0)
codim((J*((ideal J_0):J)):ideal(J_0))
endomorphisms (J,J_0)
vasconcelos (radical J, J_0)
endomorphisms (radical J,J_0)
codim J
syz gens J
///
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
S = QQ [(symbol Y)_1, (symbol Y)_2, (symbol Y)_3, (symbol Y)_4, symbol x, symbol y, Degrees => {{7, 1}, {5, 1}, {6, 1}, {6, 1}, {1, 0}, {1, 0}}, MonomialOrder => ProductOrder {4, 2}]
J =
ideal(Y_3*y-Y_2*x^2,Y_3*x-Y_4*y,Y_1*x^3-Y_2*y^5,Y_3^2-Y_2*Y_4*x,Y_1*Y_4-Y_2^2*y^3)
R = S/J
R' = integralClosure R
KF = frac(ring ideal R')
M1 = first entries substitute(vars R, KF)
M2 = apply(R.icFractions, i -> matrix{{i}})
assert(matrix{icFractions R} == substitute(matrix {{(Y_2*y^2)/x, (Y_1*x)/y,
Y_1, Y_2, Y_3, Y_4, x, y}}, frac R))
///
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
assert isNormal (QQ[x]/(x^2+1))
assert not isNormal (QQ[x,y,z]/( ideal(x*y, z) * ideal (z-1) ))
assert not isNormal (QQ[x,y,z]/( ideal(x*y) * ideal (x-1,y-1) ))
assert not isNormal (QQ[x,y,z]/( ideal(x*y, z) * ideal (x-1,y-1) ))
assert not isNormal (QQ[x,y,z]/( ideal(x*y) * ideal (z-1) ))
assert not isNormal (QQ[x,y,z]/( ideal(x*y) * ideal (z-1) ))
assert isNormal (QQ[x,y,z,t]/( ideal (x^2+y^2+z^2,t) ))
-- here is an example of why the ring has to be equidimensional:
-- assert isNormal (QQ[x,y,z,t]/( ideal (x^2+y^2+z^2,t) * ideal(t-1) ))
///
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
debug IntegralClosure
kk=ZZ/101
S=kk[a,b,c]
I =ideal"a3,ac2"
M = module ideal"a2,ac"
f=inducedMap(M,module I)
assert(extendIdeal(f) == ideal(a^2, a*c))
///
-- MES TODO: make this into a test. There are no assert's here.
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
debug IntegralClosure
kk=ZZ/2
S=kk[a,b,c,d]
PP = monomialCurveIdeal(S,{1,3,4})
betti res PP
for count from 1 to 10 list parametersInIdeal PP
for count from 1 to 10 list canonicalIdeal (S/PP)
///
-- MES TODO: test canonicalIdeal1 here?
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
debug IntegralClosure
setRandomSeed 0
A = ZZ/101[a..e]
I = ideal"ab,bc,cd,de,ea"
R = reesAlgebra I
describe I
describe R
assert(canonicalIdeal1 R == ideal(w_4, a*b))
assert(canonicalIdeal R == ideal(w_4, a*b))
R1 = first flattenRing R
assert(canonicalIdeal1 R1 == ideal(w_4, a*b))
assert(canonicalIdeal R1 == ideal(w_4, a*b))
///
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
debug IntegralClosure
kk=ZZ/101
S=kk[a,b,c,d]
canonicalIdeal S
PP = monomialCurveIdeal(S,{1,3,4})
betti res PP
R = S/PP
w=canonicalIdeal R
w1 = canonicalIdeal1 R -- a different, somewhat less pleasing answer...
-- check that these two different canonical ideals are isomorphic.
F = homomorphism (Hom(w,w1))_{0}
ker F
prune coker F
assert isIsomorphism F
///
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
kk=ZZ/101
S = kk[a,b,d,e]
S' = kk[a,b,c,d,e]
I = monomialCurveIdeal(S,{1,3,4})
R = S/I
J = ideal integralClosure R
J' = ideal integralClosure(target (makeS2 R)_0)
assert(J' == substitute(J, ring J'))
J'' = monomialCurveIdeal(S', {1,2,3,4})
use S'
phi = map(S',ring J,{c,a,b,d,e})
assert(J'' == phi J)
use R
assert(first icFractions R == (d^2/e))
(f,g) = makeS2 R
assert(isWellDefined f)
assert(source f === R)
///
TOOSLOW ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
createD = () -> (
C = QQ[B1,B2,B3,B4,B5,B6];
I = ideal(B4*B5+B1*B6,B1*B4+B2*B4-B3*B6,B1^2+B1*B2+B3*B5,B2*B5^2-B6^2,B1*B2*
B5+B4*B6,B3*B4^2-B6^2,B3^2*B4-B1*B6-B2*B6,B2*B3*B4-B3^2*B6-B5*B6,B3^3-B1
*B2-B2^2+B3*B5,B1*B3^2+B1*B5+B2*B5,B1*B2*B3+B3^2*B5+B5^2,B1*B2^2+B2*B3*
B5+B4^2,B3^2*B5^2+B5^3-B3*B4*B6,B2^3*B4-B2^2*B3*B6-B3^2*B5*B6-B4^3-B5^2*
B6);
D = C/I
);
D = createD();
assert(numgens integralClosure(D, Strategy=>{RadicalCodim1})==numgens D+2)
D = createD();
assert(numgens integralClosure D == numgens D + 2)
D = createD();
assert(numgens elapsedTime integralClosure(D, Strategy => {SimplifyFractions}) == numgens D + 2)
///
TOOSLOW ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
S = ZZ/32003[a,b,c,d,x,y,z,u]
I = ideal(
a*x-b*y,
b*u^7+b*u^6-2*b*z*u^4+b*u^5-2*b*z*u^3-2*b*z*u^2+3*b*z^2+c*x,
a*u^7+a*u^6-2*a*z*u^4+a*u^5-2*a*z*u^3-2*a*z*u^2+3*a*z^2+c*y,
b*z*u^6+9142*b*z*u^5+13715*b*z^2*u^3-9143*b*z*u^4-9145*b*u^5-13716*b*z^2*u^2-13712*b*z^2*u-13713*b*z*u^2+4568*b*z^2+9145*c*x*u-9145*c*x+4572*d*x,
a*z*u^6+9142*a*z*u^5+13715*a*z^2*u^3-9143*a*z*u^4-9145*a*u^5-13716*a*z^2*u^2-13712*a*z^2*u-13713*a*z*u^2+4568*a*z^2+9145*c*y*u-9145*c*y+4572*d*y,
c*u^8+7111*c*z*u^6+3556*d*u^7+10667*c*z*u^5+3556*d*u^6+14224*c*z^2*u^3+14223*c*z*u^4-7112*d*z*u^4+3556*d*u^5+10668*c*z^2*u^2-7112*d*z*u^3+7112*c*z^2*u-7112*d*z*u^2+10668*d*z^2);
R = S/I
time R' = integralClosure(R, Strategy=>{RadicalCodim1}) -- slightly faster than without it
use R
netList icFractions R
assert isWellDefined icMap R
assert(R' === target icMap R)
assert(R === source icMap R)
--assert(conductor icMap R == ideal"x,y,z-u,u2-u") -- MES: get conductor working on these...
///
-- integrally closed test
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
R = QQ[u,v]/ideal(u+2)
time J = integralClosure (R,Variable => symbol a)
use ring ideal J
assert(ideal J == ideal(u+2))
assert(set icFractions R === set{-2_(frac R), v_(frac R)})
///
-- degrees greater than 1 test
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
R = ZZ/101[symbol x..symbol z,Degrees=>{2,5,6}]/(z*y^2-x^5*z-x^8)
time R' = integralClosure (R,Variable => symbol b)
use ring ideal R'
answer = ideal(b_(1,0)*x^2-y*z, x^6-b_(1,0)*y+x^3*z, -b_(1,0)^2+x^4*z+x*z^2)
assert(ideal R' == answer)
use R
assert(conductor(R.icMap) == ideal(x^2,y))
assert((icFractions R) == first entries substitute(matrix {{y*z/x^2, x, y, z}},frac R))
assert isWellDefined icMap R
assert isNormal R'
///
-- multigraded test
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
R = ZZ/101[symbol x..symbol z,Degrees=>{{1,2},{1,5},{1,6}}]/(z*y^2-x^5*z-x^8)
time R' = integralClosure (R,Variable=>symbol a)
use ring ideal R'
assert(ideal R' == ideal(-x^6+a_(1,0)*y-x^3*z,-a_(1,0)*x^2+y*z,a_(1,0)^2-x^4*z-x*z^2))
use R
assert(0 == matrix{icFractions R} - matrix {{y*z/x^2, x, y, z}})
assert isWellDefined icMap R'
assert isNormal R'
///
-- multigraded homogeneous test
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
R = ZZ/101[symbol x..symbol z,Degrees=>{{4,2},{10,5},{12,6}}]/(z*y^2-x^5*z-x^8)
time R' = integralClosure (R,Variable=>symbol a)
use ring ideal R'
assert(ideal R' == ideal(a_(1,0)*x^2-y*z,a_(1,0)*y-x^6-x^3*z,a_(1,0)^2-x^4*z-x*z^2))
use R
assert(0 == matrix {icFractions R} - matrix {{y*z/x^2, x, y, z}})
assert(conductor(R.icMap) == ideal(x^2,y))
///
-- Reduced not a domain test
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
S=ZZ/101[symbol a,symbol b,symbol c, symbol d]
I=ideal(a*(b-c),c*(b-d),b*(c-d))
R=S/I
compsR = apply(decompose ideal R, J -> S/J)
ansR = compsR/integralClosure
compsR/icFractions
apply(decompose ideal R, J -> integralClosure(S/J))
assert all(compsR/icMap, f -> f == 1)
///
--Craig's example as a test
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
S = ZZ/101[symbol x,symbol y,symbol z,MonomialOrder => Lex]
I = ideal(x^6-z^6-y^2*z^4)
Q = S/I
time Q' = integralClosure (Q, Variable => symbol a)
use ring ideal Q'
assert(ideal Q' == ideal (x^2-a_(3,0)*z, a_(3,0)*x-a_(4,0)*z, a_(3,0)^2-a_(4,0)*x, a_(4,0)^2-y^2-z^2))
use Q
assert(conductor(Q.icMap) == ideal(z^3,x*z^2,x^3*z,x^4))
assert(matrix{icFractions Q} == substitute(matrix{{x^3/z^2,x^2/z,x,y,z}},frac Q)) -- MES FLAG: this looks like z^2 is in the conductor?? possible bug?
isNormal Q'
///
--Mike's inhomogeneous test
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
R = QQ[symbol a..symbol d]
I = ideal(a^5*b*c-d^2)
Q = R/I
Q' = time integralClosure(Q,Variable => symbol x, Keep=>{})
use ring ideal Q'
assert(ideal Q' == ideal(x_(1,0)^2-a*b*c))
use Q
assert(matrix{icFractions Q} == matrix{{d/a^2,a,b,c}})
///
-- rational quartic, to make sure S2 is not being forgotten!
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
S = QQ[a..d]
I = monomialCurveIdeal(S,{1,3,4})
R = S/I
R' = integralClosure R
assert(numgens R' == 5)
assert isNormal R'
///
--Ex from Wolmer's book - tests longer example and published result.
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
R = ZZ/101[symbol a..symbol e]
I = ideal(a^2*b*c^2+b^2*c*d^2+a^2*d^2*e+a*b^2*e^2+c^2*d*e^2,
a*b^3*c+b*c^3*d+a^3*b*e+c*d^3*e+a*d*e^3,
a^5+b^5+c^5+d^5-5*a*b*c*d*e+e^5,
a^3*b^2*c*d-b*c^2*d^4+a*b^2*c^3*e-b^5*d*e-d^6*e+3*a*b*c*d^2*e^2-a^2*b*e^4-d*e^6,
a*b*c^5-b^4*c^2*d-2*a^2*b^2*c*d*e+a*c^3*d^2*e-a^4*d*e^2+b*c*d^2*e^3+a*b*e^5,
a*b^2*c^4-b^5*c*d-a^2*b^3*d*e+2*a*b*c^2*d^2*e+a*d^4*e^2-a^2*b*c*e^3-c*d*e^5,
b^6*c+b*c^6+a^2*b^4*e-3*a*b^2*c^2*d*e+c^4*d^2*e-a^3*c*d*e^2-a*b*d^3*e^2+b*c*e^5,
a^4*b^2*c-a*b*c^2*d^3-a*b^5*e-b^3*c^2*d*e-a*d^5*e+2*a^2*b*c*d*e^2+c*d^2*e^4)
S = R/I
elapsedTime S' = integralClosure S
icFractions S -- MES: Seemingly poor choice for fractions?
M = pushForward (icMap S, S'^1);
assert(degree (M/(M_0)) == 2) -- MES: what are we testing here?
assert(# icFractions S == 7)
-- this is part of the above example. But what to really place into the test?
StoS2 = (makeS2 S)_0;
S2 = target StoS2 -- MES: this doesn't set fractions. Should it?
-*
time integralClosure(S2, Verbosity => 3) -- MES: example where jacobian time is long, whole thing is very long
M = pushForward (StoS2, S2^1);
gens M
N = prune(M/M_0)
assert(degree N == 2)
time V = integralClosure (S, Variable => X) -- MES BUG: this doesn't change variable name!
degree S
codim singularLocus S
use ring ideal V
oldanswer = ideal(a^2*b*c^2+b^2*c*d^2+a^2*d^2*e+a*b^2*e^2+c^2*d*e^2,
a*b^3*c+b*c^3*d+a^3*b*e+c*d^3*e+a*d*e^3,
a^5+b^5+c^5+d^5-5*a*b*c*d*e+e^5,
a*b*c^4-b^4*c*d-X_0*e-a^2*b^2*d*e+a*c^2*d^2*e+b^2*c^2*e^2-b*d^2*e^3,
a*b^2*c^3+X_1*d+a*b*c*d^2*e-a^2*b*e^3-d*e^5,
a^3*b^2*c-b*c^2*d^3-X_1*e-b^5*e-d^5*e+2*a*b*c*d*e^2,
a^4*b*c+X_0*d-a*b^4*e-2*b^2*c^2*d*e+a^2*c*d*e^2+b*d^3*e^2,
X_1*c+b^5*c+a^2*b^3*e-a*b*c^2*d*e-a*d^3*e^2,
X_0*c-a^2*b^2*c*d-b^2*c^3*e-a^4*d*e+2*b*c*d^2*e^2+a*b*e^4,
X_1*b-b*c^5+2*a*b^2*c*d*e-c^3*d^2*e+a^3*d*e^2-b*e^5,
X_0*b+a*b*c^2*d^2-b^3*c^2*e+a*d^4*e-a^2*b*c*e^2+b^2*d^2*e^2-c*d*e^4,
X_1*a-b^3*c^2*d+c*d^2*e^3,X_0*a-b*c*d^4+c^4*d*e,
X_1^2+b^5*c^5+b^4*c^3*d^2*e+b*c^2*d^3*e^4+b^5*e^5+d^5*e^5,
X_0*X_1+b^3*c^4*d^3-b^2*c^7*e+b^2*c^2*d^5*e-b*c^5*d^2*e^2-
a*b^2*c*d^3*e^3+b^4*c*d*e^4+a^2*b^2*d*e^5-a*c^2*d^2*e^5-b^2*c^2*e^6+b*d^2*e^7,
X_0^2+b*c^3*d^6+2*b^5*c*d^3*e+c*d^8*e-b^4*c^4*e^2+a^3*c^3*d^2*e^2+
2*a^2*b^3*d^3*e^2-5*a*b*c^2*d^4*e^2+4*b^3*c^2*d^2*e^3-3*a*d^6*e^3+
5*a^2*b*c*d^2*e^4-b^2*d^4*e^4-2*b*c^3*d*e^5-a^3*b*e^6+3*c*d^3*e^6-a*d*e^8)
-- We need to check the correctness of this example!
newanswer = ideal(
a^2*b*c^2+b^2*c*d^2+a^2*d^2*e+a*b^2*e^2+c^2*d*e^2,
a*b^3*c+b*c^3*d+a^3*b*e+c*d^3*e+a*d*e^3,
a^5+b^5+c^5+d^5-5*a*b*c*d*e+e^5,
X_1*e-a^3*b^2*c+b*c^2*d^3,
X_1*d+a*b^2*c^3-b^5*d-d^6+3*a*b*c*d^2*e-a^2*b*e^3-d*e^5,
X_1*c-c*d^5+a^2*b^3*e+a*b*c^2*d*e-a*d^3*e^2,
X_1*b-b^6-b*c^5-b*d^5+4*a*b^2*c*d*e-c^3*d^2*e+a^3*d*e^2-b*e^5,
X_1*a-a*b^5-b^3*c^2*d-a*d^5+2*a^2*b*c*d*e+c*d^2*e^3,
X_0*e-a*b*c^4+b^4*c*d,
X_0*d+a^4*b*c-a^2*b^2*d^2+a*c^2*d^3-a*b^4*e-b^2*c^2*d*e+a^2*c*d*e^2,
X_0*c-2*a^2*b^2*c*d+a*c^3*d^2-a^4*d*e+b*c*d^2*e^2+a*b*e^4,
X_0*b-a^2*b^3*d+2*a*b*c^2*d^2+a*d^4*e-a^2*b*c*e^2-c*d*e^4,
X_0*a-a^3*b^2*d+a^2*c^2*d^2-b*c*d^4+a*b^2*c^2*e+c^4*d*e-a*b*d^2*e^2,
X_1^2-b^10-b^5*c^5+2*a*b^2*c^3*d^4-2*b^5*d^5-d^10-5*b^4*c^3*d^2*e+6*a*b*c*d^6*e-6*a^3*b^4*d*e^2-4*b^3*c*d^4*e^2+2*a^2*b*d^4*e^3-4*a*b^3*d^2*e^4+b*c^2*d^3*e^4-b^5*e^5-d^5*e^5,
X_0*X_1-a^2*b^7*d+b^3*c^4*d^3+a^4*b*c*d^4-a^2*b^2*d^6+a*c^2*d^7+4*b^2*c^2*d^5*e+b^6*d^2*e^2+b*c^5*d^2*e^2+3*a^2*c*d^5*e^2+b*d^7*e^2+a^4*b^3*e^3+4*c^3*d^4*e^3-2*a^3*d^3*e^4+b*d^2*e^7,
X_0^2-a^4*b^4*d^2-a^2*c^4*d^4+7*b*c^3*d^6-2*b^5*c*d^3*e-2*c^6*d^3*e+2*a^3*b*d^5*e+5*c*d^8*e+a^3*c^3*d^2*e^2-6*a^2*b^3*d^3*e^2-a*b*c^2*d^4*e^2-2*a*b^5*d*e^3-2*b^3*c^2*d^2*e^3+5*a*d^6*e^3-a^2*b*c*d^2*e^4+a^3*b*e^6+c*d^3*e^6+a*d*e^8)
assert(ideal V == newanswer)
*-
///
-- Test of isNormal
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
S = ZZ/101[x,y,z]/ideal(x^2-y, x*y-z^2)
assert not isNormal S
assert isNormal integralClosure S
///
-- Test of icMap and conductor
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
R = QQ[x,y,z]/ideal(x^6-z^6-y^2*z^4)
R' = integralClosure R
F = R.icMap
use R
assert(conductor F == ideal(z^3,x*z^2,x^3*z,x^4))
icFractions R -- MES BUG? again, these look like z^2 is is the conductor...
///
-- Test of not keeping the original variables
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
R = QQ[x,y]/(y^2-x^3)
R' = integralClosure(R, Keep=>{})
assert(numgens R' == 1)
assert(numgens ideal R' == 0)
assert(ring x === R)
assert(icFractions R == {y/x})
F = icMap R
assert(target F === R')
assert(source F === R)
///
--huneke2
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
kk = ZZ/32003
S = kk[a,b,c]
F = a^2*b^2*c+a^4+b^4+c^4
J = ideal jacobian ideal F
substitute(J:F, kk) -- check local quasi-homogeneity!
I = ideal first (flattenRing reesAlgebra J)
betti I
R = (ring I)/I
--time R'=integralClosure(R, Strategy => {StartWithOneMinor}, Verbosity =>3 ) -- this is bad in the first step!
time R' = integralClosure(R, Verbosity => 3) -- this one takes perhaps too long for a test
assert(numgens R' == 13)
assert(numgens ideal gens gb ideal R' == 54) -- this is not an invariant...!
-- clear R, and do another one
R1 = (ring I)/(ideal I_*)
time R1'=integralClosure(R1, Verbosity => 3, Strategy => {RadicalCodim1})
assert(numgens R1' == 13)
assert(numgens ideal gens gb ideal R1' == 54) -- this is not an invariant!
icFractions R1 -- MES: these fractions are messier than they could be?
///
-- see https://github.com/Macaulay2/M2/issues/933
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
S = QQ[a..f]
I = ideal(a*b*c,a*d*f,c*e*f,b*e*d)
assert (integralClosure I == integralClosure trim I)
///
-- added from bug-integralClosure.m2 May 2020
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
debug IntegralClosure -- for extendIdeal
S = ZZ/101[a,b,c,d]
K =ideal(a,b)
I = c*d*K
M = module (c*K)
M' = module(d*K)
phi = map(M,module I,d*id_M)
phi' = map(M',module I,c*id_M')
assert(isWellDefined phi)
assert(extendIdeal phi == c*K)
assert(extendIdeal phi'== d*K)
assert(integralClosure I == I)
assert(integralClosure ideal"a2,b2" == ideal"a2,ab,b2")
///
TEST ///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
debug IntegralClosure -- for extendIdeal
S = ZZ/101[a,b,c]/ideal(a^3-b*(b-c)*(b+c))
K =ideal(a,b)
I = c*(b+c)*K
M = module (c*K)
M' = module((b+c)*K)
phi = map(M,module I,(b+c)*id_M)
phi' = map(M',module I,c*id_M')
assert(isWellDefined phi)
assert(isWellDefined phi')
assert(extendIdeal phi == c*K)
assert(extendIdeal phi'== (b+c)*K)
assert(integralClosure I == I)
///
TEST///
-*
restart
loadPackage("IntegralClosure", Reload => true)
*-
debug IntegralClosure -- for extendIdeal
S = ZZ/101[a,b,c]/ideal(a^3-b^2*c)
K =ideal(a,b)
I = c*(b+c)*K
M = module (c*K)
M' = module((b+c)*K)
phi = map(M,module I,(b+c)*id_M)
phi' = map(M',module I,c*id_M')
assert(isWellDefined phi)
assert(isWellDefined phi')
assert(extendIdeal(phi)== c*K)
assert(extendIdeal(phi')== (b+c)*K)
assert(integralClosure(ideal(a^2,b^2))==ideal"a2,ab,b2")
assert(integralClosure I == I)
///
load "./IntegralClosure/HarbourneExamples.m2"
-- an example of Brian Harbourne
TEST ///
-- An example construction communicated to us by Craig Huneke
-- Start with a polynomial f (but generally not quasi-homog),
-- consider the Jacobian ideal J, then f is in the integral closure of J.
-- Actually, is this true?
-*
restart
loadPackage("IntegralClosure", Reload =>true)
*-
kk = ZZ/32003
S = kk[x,y,z,t]
F = poly"xy-(z-t2)(z-t3)(z-t4)"
J = ideal jacobian ideal F
mm = ideal vars S
F % (J+mm*F)!=0 -- shows that F is not crypto-quasihomogeneous
J' = integralClosure J
assert (F % (J'+mm*F) == 0)
///
-- a homogeneous example which extends the ground field
TEST ///
kk = QQ
R = kk[x,y, z]
I1 = ideal(x,y-z)
I2 = ideal(x-3*z, y-5*z)
I3 = ideal(x,y)
I4 = ideal(x-5*z,y-2*z)
I = intersect(I1^3, I2^3, I3^3, I4^3)
F = I_0 + I_1 + I_2 + I_3
assert isHomogeneous F
S = R/F
V = integralClosure S
ring presentation V
ideal V
trim ideal V -- MES: should we be using this? It is much simpler
icFractions S -- nasty fraction, is it that bad?
-- notice that this fraction is actually algebraic over the base field
use ring ideal V
G = eliminate(ideal V, {x,y,z})
assert(numgens G == 1)
assert(isPrime G_0) -- G_0 is a cubic over kk
///
TEST ///
-- git issue #1117
R = QQ[a,b,c,d,e,f]
I = ideal(a*b*d,a*c*e,b*c*f,d*e*f);
J = I^2;
K = integralClosure(I,2)
F = ideal(a*b*c*d*e*f);
assert not isSubset(F,J)
assert isSubset(F,K)
assert isSubset(F^2,J^2)
assert(K != J)
assert(K == J + F)
///
TEST ///
-- git issue #846
R = QQ[x,y]
I = ideal(x^2,y^2)
assert(integralClosure I == ideal(x^2, x*y, y^2))
///
TEST ///
-- bug mentioned on 22 Dec 2020 in googlegroup.
-- fixed later in Dec 2020.
R = QQ[x,y]/(x^3-y^2)
I = ideal(y)
integralClosure I
integralClosure(I,2)
assert(integralClosure I == ideal(y, x^2))
///
TEST ///
R = QQ[x,y]/(x^3-y^2)
I = ideal(y)
integralClosure I
integralClosure(I,2)
assert(integralClosure I == ideal(y, x^2))
///
TEST ///
R = QQ[x,y]
assert(integralClosure R === R)
assert(integralClosure ideal 1_R == ideal 1_R)
--integralClosure ideal 0_R -- so so error message, but at least there is one.
A = QQ[x,y,z]
assert(A === integralClosure A)
S = A/ker map(QQ[t],A,{t^3,t^5,t^7})
assert(integralClosure ideal(y,z) == ideal(x^2, y, z))
///
end-------------------------------------------------------------------------
-*
loadPackage("MinimalPrimes",Reload =>true)
loadPackage("IntegralClosure",Reload =>true)
restart
installPackage("MinimalPrimes")
restart
uninstallPackage("IntegralClosure")
restart
installPackage("IntegralClosure")
check IntegralClosure
viewHelp IntegralClosure
*-
restart
uninstallPackage "IntegralClosure"
uninstallPackage "MinimalPrimes"
restart
installPackage "MinimalPrimes"
installPackage "IntegralClosure"
check IntegralClosure
viewHelp IntegralClosure
viewHelp integralClosure
loadPackage("IntegralClosure", Reload=>true)
/// MIKETEST
-- XXX
R = ZZ/32003[x,y,z]
f = y^4-2*x^3*y^2-4*x^5*y+x^6-x^7+z^4
eulerIdeal = method()
eulerIdeal RingElement := Ideal => (f) -> (
R := ring f;
I := ideal jacobian ideal f;
ideal apply(numgens R, i -> R_i * I_i)
)
localIsQuasiHomogeneous = method()
localIsQuasiHomogeneous RingElement := Boolean => f -> (
mm := ideal vars ring f;
f % (f * mm + (ideal jacobian ideal f)) == 0
)
assert not localIsQuasiHomogeneous f
-- now get the Rees ideal of the Euler ideal
I = eulerIdeal f
J = reesIdeal(I, I_0, Variable => w)
J = first flattenRing J
A = (ring J)/J
integralClosure(A, Strategy => {SimplifyFractions}, Verbosity => 4);
integralClosure(A, Verbosity => 4);
///
TEST ///
-- MES TODO: put assertions in here
S = QQ[y,x,MonomialOrder=>Lex]
F = poly"y5-y2+x3+x4"
factor discriminant(F,y)
R=S/F
R' = integralClosure R
icFractions R
describe R'
///
TEST ///
-- of idealizer
-- MES TODO: add assertions
S = QQ[y,x,MonomialOrder=>Lex]
F = poly"y4-y2+x3+x4"
factor discriminant(F,y)
R=S/F
L = trim radical ideal(x_R)
(f1,g1) = idealizer(L,L_0)
U = target f1
K = frac R
f1
g1
L = trim ideal jacobian R
R' = integralClosure R
icFractions R
icMap R
///
-- Tests that Mike has added:
loadPackage "IntegralClosure"
S = ZZ/101[a..d]
I = ideal(b^2-b)
R = S/I
integralClosure(R)
-- M2 crash:
kk = QQ
R = kk[x,y,z, MonomialOrder => Lex]
p1 = ideal"x,y,z"
p2 = ideal"x,y-1,z-2"
p3 = ideal"x-2,y,5,z"
p4 = ideal"x+1,y+1,z+1"
D = trim intersect(p1^3,p2^3,p3^3,p4^3)
betti D
B = basis(4,D)
F = (super(B * random(source B, R^{-4})))_(0,0)
ideal F + ideal jacobian matrix{{F}}
decompose oo
factor F
A = R/F
loadPackage "IntegralClosure"
ideal F + ideal jacobian matrix{{F}}
decompose oo
-------------------
kk = ZZ/101
R = kk[x,y,z]
p1 = ideal"x,y,z"
p2 = ideal"x,y-1,z-2"
p3 = ideal"x-2,y,5,z"
p4 = ideal"x+1,y+1"
D = trim intersect(p1^3,p2^3,p3^3,p4^2)
betti D
B = basis(5,D)
F = (super(B * random(source B, R^{-5})))_(0,0)
factor F
A = R/F
JF = trim(ideal F + ideal jacobian matrix{{F}})
codim JF
radJF = radical(JF, Strategy=>Unmixed)
NNL = radJF
NNL = substitute(NNL,A)
(phi,fracs) = idealizer(NNL,NNL_0)
phi
#fracs
----------------------
kk = ZZ/101
R = kk[x,y,z]
p1 = ideal"x,y,z"
p2 = ideal"x,y-1,z-2"
p3 = ideal"x-2,y,5,z"
p4 = ideal"x+1,y+1"
D = trim intersect(p1^3,p2^3,p3^3,p4^3)
betti D
F = random(6,D)
factor F
A = R/F
JF = trim(ideal F + ideal jacobian matrix{{F}})
codim JF
radJF = radical(JF, Strategy=>Unmixed)
decompose radJF
elapsedTime integralClosure A -- MES TODO: 19 May 2020: 4.94 seconds on my MBP
---------------------- Birational Work
-- MES TODO: what is this block of code testing?
R = ZZ/101[b_1, x,y,z, MonomialOrder => {GRevLex => {7}, GRevLex=>{2,5,6}}]
R = ZZ/101[x,y,z]
S = R[b_1, b_0]
I = ideal(b_1*x^2-42*y*z, x^6+12*b_1*y+ x^3*z, b_1^2 - 47*x^4*z - 47*x*z^2)
I = ideal(b_1*x-42*b_0, b_0*x-y*z, x^6+12*b_1*y+ x^3*z, b_1^2 -47*x^4*z - 47*x*z^2, b_0^2-x^6*z - x^4*z^2)
leadTerm gens gb I
R = ZZ/101[x,y,z]/(z*y^2-x^5*z-x^8)
J = integralClosure(R)
R.icFractions
describe J
S=ZZ/101[symbol x,symbol y,symbol z,MonomialOrder => Lex]
I=ideal(x^6-z^6-y^2*z^4)
Q=S/I
time J = integralClosure (Q, Variable => symbol a)
S = ZZ/101[a_7,a_6,x,y,z, MonomialOrder => {GRevLex => 2, GRevLex => 3}]
Inew = ideal(x^2-a_6*z,a_6*x-a_7*z,a_6^2-a_7*x,a_7^2-y^2-z^2)
leadTerm gens gb Inew
radical ideal oo
///
-*
restart
loadPackage"IntegralClosure"
*-
R=ZZ/2[x,y,Weights=>{{8,9},{0,1}}]
I=ideal(y^8+y^2*x^3+x^9) -- eliminates x and y at some point.
A = R/I
elapsedTime A' = integralClosure(A, Verbosity => 1) -- MES TODO: the ideal is messy, also: is the answer correct, given ZZ/2??
R=ZZ/2[x,y,Weights=>{{31,12},{0,1}}]
I=ideal"y12+y11+y10x2+y8x9+x31" -- really long, should it really be this bad?
A = R/I
elapsedTime A' = integralClosure(A, Verbosity => 1) -- MES TODO: pretty bad timing
transpose gens ideal A'
///
--------------
-- Examples --
--------------
-*
Theorem (Saito): If R is a formal power series ring over a field of char 0,
and f has isolated singularity,
then f\in R is contained in j(f), the Jacobian ideal iff f is
quasi-homogeneous after a change of variables.
Theorem (Lejeune-Teisser?; see Swanson-Huneke Thm 7.1.5)
f \in integral closure(ideal apply(numgens R,i-> x_i*df/dx_i))
Conjecture (Huneke: f is never a minimal generator of the integral closure of
ideal apply(numgens R,i-> df/dx_i).
--the method (testHunekeQuestion, Ring, RingElement) checks this
viewHelp testHunekeQuestion
*-
debug IntegralClosure -- for testHunekeQuestion
n = 3
R = QQ[x_0..x_(n-1)]
mm = ideal vars R
f = random({3},R)+random({4},R)+random(5,R)
testHunekeQuestion f
R = ZZ/32003[x,y,z]
f = (y^4-2*x^3*y^2-4*x^5*y+x^6-x^7+z^4)
-- testHunekeQuestion(R,f) -- currently too slow
--from Eisenbud-Neumann p.11: simplest poly with 2 characteristic pairs.
R = QQ[y,x]
f = (y^4-2*x^3*y^2-4*x^5*y+x^6-x^7)
testHunekeQuestion f
R = R/f
time R' = integralClosure R
icFractions R
icMap R
R = QQ[y,x]/(y^2-x^4-x^7)
integralClosure R
icFractions R
icMap R
R = QQ[x,y]/(y^4-2*x^3*y^2-4*x^5*y+x^6-x^7)
time R' = integralClosure R
icFractions R
icMap R
R = ZZ/32003[x,y,z]/(z^3*y^4-2*x^3*y^2*z^2-4*x^5*y*z+x^6*z-x^7)
isHomogeneous R
time R' = integralClosure R
icFractions R
icMap R
kk = ZZ/32003
S = kk[v,u]
I=ideal(5*v^6+7*v^2*u^4+6*u^6+21*v^2*u^3+12*u^5+21*v^2*u^2+6*u^4+7*v^2*u)
R = S/I
time R' = integralClosure R
ideal R'
icFractions R
conductor icMap R -- can't do it since not homogeneous
-- Doug Leonard example ----------------------
restart
S=ZZ/2[z19,y15,y12,x9,u9,MonomialOrder=>{Weights=>{19,15,12,9,9},Weights=>{12,9,9,9,0},1,2,2}]
I = ideal(
y15^2+y12*x9*u9,
y15*y12+x9^2*u9+x9*u9^2+y15,
y12^2+y15*x9+y15*u9+y12,
z19^3+y12*x9^3*u9^2+z19*y15*x9*u9+y15*x9^3*u9+y15*x9^2*u9^2
+z19*y12*x9*u9+z19*y15*u9+z19*y12*u9+y12*x9^2*u9)
isHomogeneous I
R = S/I;
time icFractions R -- MES TODO: correct? better basis choice?
errorDepth=0
time A = icFracP R -- MES TODO: pretty long
time A = integralClosure R;
----------------------------------------------
-- Another example from Doug Leonard
S = ZZ/2[z19,y15,y12,x9,u9,MonomialOrder=>{Weights=>{19,15,12,9,9},Weights=>{12,9,9,9,0},1,2,2}]
I = ideal(y15^3+x9*u9*y15+x9^3*u9^2+x9^2*u9^3,y15^2+y12*x9*u9,z19^3+(y12+y15)*(x9+1)*u9*z19+(y12*(x9*u9+1)+y15*(x9+u9))*x9^2*u9)
R = S/I
time A = integralClosure R;
S = ZZ/2[z19,y15,y12,x9,u9,MonomialOrder=>{Weights=>{19,15,12,9,9},Weights=>{12,9,9,9,0},1,2,2}]
I = ideal(
y15^2+y12*x9*u9,
y15*y12+x9^2*u9+x9*u9^2+y15,
y12^2+y15*x9+y15*u9+y12,
z19^3+y12*x9^3*u9^2+z19*y15*x9*u9+y15*x9^3*u9+y15*x9^2*u9^2
+z19*y12*x9*u9+z19*y15*u9+z19*y12*u9+y12*x9^2*u9)
isHomogeneous I
R = S/I;
time A = integralClosure R;
errorDepth=0
time A = icFracP R
time A = integralClosure R;
icFractions R
----------------------------------------------
restart
load "IntegralClosure.m2"
S = ZZ/32003[x,y];
F = (y^2-3/4*y-15/17)^3-9*y*(y^2-3/4*y-15/17*x)-27*x^11
R = S/F
time R' = integralClosure R
assert(R === R')
use ring F
factor discriminant(F,y)
factor discriminant(F,x)
----------------------------------------------
restart
load "IntegralClosure.m2"
S=ZZ/2[x,y,Weights=>{{8,9},{0,1}}]
I=ideal(y^8+y^2*x^3+x^9) -- eliminates x and y at some point.
R=S/I
time R'=integralClosure(R, Strategy => {StartWithOneMinor})--, Verbosity =>3 )
time R'=integralClosure(R)--, Verbosity =>3)
icFractions R
S=ZZ/2[x,y,Weights=>{{31,12},{0,1}}]
I=ideal"y12+y11+y10x2+y8x9+x31"
R = S/I
time R'=integralClosure(R) -- really long?
transpose gens ideal S
S=ZZ/2[x,y]
I=ideal"y12+y11+y10x2+y8x9+x31"
R = S/I
time R'=integralClosure(R) -- really long?
transpose gens ideal S
icFracP R -- very much faster!
----------------------------------------------
-- MES TODO: this doesn't run.
restart
-- in IntegralClosure dir:
load "IntegralClosure/runexamples.m2"
runExamples(H,10,Verbosity=>3)
restart
load "IntegralClosure.m2"
kk = QQ
S = kk[x,y,u]
R = S/(u^2-x^3*y^3)
time integralClosure R
-- another example from Doug Leonard ----------------------------
S=ZZ/2[z,y,x,MonomialOrder=>{Weights=>{32,21,14}}];
I=ideal(z^7+x^5*(x+1)^5*(x^2+x+1)^3,y^2+y*x+x*(x^2+x+1));
R=S/I;
time P=presentation(integralClosure(R)); -- used 4.73 seconds
toString(gens gb P)
-- MES TODO: FractionalIdeals is not here!
loadPackage "FractionalIdeals"
S=ZZ/2[z,y,x,MonomialOrder=>{2,1}];
I=ideal(z^7+x^5*(x+1)^5*(x^2+x+1)^3,y^2+y*x+x*(x^2+x+1));
R=S/I;
time integralClosureHypersurface(R) -- doesn't work yet
use R
time integralClosureDenominator(R,x^16+x^14+x^13+x^11+x^10+x^8+x^7+x^5)
-----------------------------------------------------------------
///
R = ZZ/101[a,b,c,Degrees=>{{1,1,0},{1,0,0},{0,0,2}}]
L = {2,2,null}
basisOfDegreeD({2,null,2}, S)
S = ZZ/101[vars(0..10), Degrees => {{2, 6}, {1, 3}, {1, 3}, {1, 3}, {1, 3}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}]
basisOfDegreeD({2,null}, S)
///
--start of file "bug-integralClosure.m2"
--family of inhomogeneous examples suggested by craig:
--integral dependence of a power series on its derivatives.
restart
--needs "bug-integralClosure.m2"
kk = ZZ/101
S = kk[a,b]
mm = ideal vars S
T = kk[t]
f = (ker map(T,S,{t^4,t^6+t^7}))_0
R = S/f
R' = integralClosure R
vars R'
see ideal R'
netList (ideal R')_*
--the simplest plane curve singularity with 2 characteristic pairs,
--thus NOT quasi-homogeneous.
--f could be any polynomial, preferably inhomogeneous, since then it's not obvious.
I = ideal diff(vars S,f)
assert(f%(I+f*mm)!=0)--f is not even locally in I
J = integralClosure I
assert(f%J != 0)--f is not in the integral closure of I; but
assert(f % (J+f*mm) == 0) --f IS locally in the integral closure of I
IR' = sub (I, R')
elapsedTime integralClosure (IR', Verbosity => 4)
---------------------------
--examples made with Dedekind-Mertens theorem
--Dedekind-Mertens example
--Let c(f,x) be the content of f with respect to the variable x.
--Theorem: c(f,x)*c(g,x) is integral over c(f*g, x).
restart
loadPackage ("IntegralClosure", Reload=>true)
setRandomSeed 0
kk = QQ
S = kk[a,b,c]
f = random(2,S)
g = random(3,S)
f' = f-sub(f, {S_0=>0,S_2=>0})
g' = g-sub(g, {S_0=>0,S_2=>0})
If = content(f',S_1)
Ig = content(g',S_1)
Ifg = content(f'*g',S_1)
assert((gens(If*Ig) % Ifg)!=0)
assert(gens(If*Ig) % integralClosure Ifg == 0)
setRandomSeed 0
kk = ZZ/32003
S = kk[a,b,c,d]
phi = map(S,S,{S_0}|toList((numgens S -1):0))
f = random(4,S)
g = random(4,S)
f' = f- phi f
g' = g- phi g
If = content(f',S_0)
Ig = content(g',S_0)
--Ig = content(g'^2,S_0)
Ifg = content(f'*g',S_0)
assert((gens(If*Ig) % Ifg)!=0)
elapsedTime assert(gens(If*Ig) % integralClosure(Ifg, Verbosity => 4) == 0)
--slow in extendIdeal!
--bug when minPrimes is used.
setRandomSeed 0
kk = ZZ/32003
S = kk[a,b,c]
phi = map(S,S,{S_0}|toList((numgens S -1):0))
f = random(4,S)
g = random(4,S)
f' = f- phi f
g' = g- phi g
If = content(f'^2,S_0)
Ig = content(g'^2,S_0)
Ifg = content(f'^2*g'^2,S_0)
assert((gens(If*Ig) % Ifg)!=0)
assert(gens(If*Ig) % integralClosure Ifg == 0)
setRandomSeed 0
kk = ZZ/32003
S = kk[a,b,c,d]
phi = map(S,S,{S_0}|toList((numgens S -1):0))
f = random(3,S)
g = random(4,S)
f' = f- phi f
g' = g- phi g
If = content(f',S_0)
Ig = content(g',S_0)
--Ig = content(g'^2,S_0)
Ifg = content(f'*g',S_0)
assert((gens(If*Ig) % Ifg)!=0)
elapsedTime assert(gens(If*Ig) % integralClosure(Ifg, Verbosity => 4) == 0)
elapsedTime integralClosure Ifg
-- MES: this is me playing around trying to find better fractions, can be removed.
use ring ideal R'
contract(w_(2,0), gens ideal R')
ideal R'
use R'
use R
f = y^3 + 6*y^2 - 16*y
g = 2*x-y
(ideal g) : (ideal f)
-- eliminate: error: expected a polynomial ring over ZZ or a field
denoms = (ideal g) : (ideal f)
lift(denoms, ambient R)
eliminate(oo, S_1)
radical((ideal g) : (ideal f))
lift(oo, S)
ideal gens gb oo
eliminate(oo, S_1)
-- write it with denominator x^3*(x+4)
((x^3*(x+4) * f)) // g
----- MES: can be removed above this line --
restart
loadPackage("IntegralClosure", Reload => true)
needsPackage "Normaliz"
-- Bug in program. Perhaps the missing variable is causing issues?
R = ZZ/101[x,y,z]
I = ideal(y^2-x^3)
normalToricRing(I, t) -- gives an error.
-- How does the following give me any info about the integral closure?
-- (It probably does, but how?)
R = ZZ/101[x,y]
I = ideal(y^2-x^3)
normalToricRing(I, t)
-- This is correct, how can I get the actual fractions added?
-- Can I? Or the image of R in this new ring?
R = ZZ/101[a,b,c,d]
I = monomialCurveIdeal(R, {1,3,4})
normalToricRing(I, t)
----- below this line: TODO --------------------------------------------------------------
-*TODO next:
documentation (strategies);
StartWithOneMinor
*AllCodimensions
*RadicalCodimOne
Radical
SimplifyFractions
StartWithS2
Vasconcelos??
ConductorElement??
correctness; makeS2;
use Normaliz where possible?;
FastMinors?
*-
--- Should Singh/Swanson be an option to integralClosure or its own
--- program. Right now it is well documented on its own. I'm not
--- sure what is best long term.
-- MES TODO. The following are either to be removed or placed above.
-- "canonicalIdeal",
-- "parametersInIdeal",
-- "randomMinors",
"endomorphisms",
"vasconcelos",
"Endomorphisms", -- compute end(I)
"Vasconcelos", -- compute end(I^-1). If both this and Endomorphisms are set:
-- compare them.
"StartWithS2", -- compute S2-ification first
"RecomputeJacobian",
"S2First",
"S2Last",
"S2None", -- when to do S2-ification
"RadicalBuiltin" -- true: use 'intersect decompose' to get radical, other wise use 'rad' in PrimaryDecomposition package