Macaulay2 » Documentation
Packages » InvolutiveBases :: InvolutiveBases
next | previous | forward | backward | up | index | toc

InvolutiveBases -- Methods for Janet bases and Pommaret bases in Macaulay 2

Description

InvolutiveBases is a package which provides routines for dealing with Janet and Pommaret bases.

Janet bases can be constructed from given Gr\"obner bases. It can be checked whether a Janet basis is a Pommaret basis. Involutive reduction modulo a Janet basis can be performed. Syzygies and free resolutions can be computed using Janet bases. A convenient way to use this strategy is to use an optional argument for resolution, see Involutive.

Some references:

Author

Version

This documentation describes version 1.10 of InvolutiveBases.

Source code

The source code from which this documentation is derived is in the file InvolutiveBases.m2.

Exports

  • Types
  • Functions and commands
    • basisElements -- extract the matrix of generators from an involutive basis or factor module basis
    • factorModuleBasis -- enumerate standard monomials
    • invNoetherNormalization -- Noether normalization
    • invReduce -- compute normal form modulo involutive basis by involutive reduction
    • invSyzygies -- compute involutive basis of syzygies
    • isPommaretBasis -- check whether or not a given Janet basis is also a Pommaret basis
    • janetBasis -- compute Janet basis for an ideal or a submodule of a free module
    • janetMultVar -- return table of multiplicative variables for given module elements as determined by Janet division
    • janetResolution -- construct a free resolution for a given ideal or module using Janet bases
    • multVar -- extract the sets of multiplicative variables for each generator (in several contexts)
    • pommaretMultVar -- return table of multiplicative variables for given module elements as determined by Pommaret division
  • Methods
    • "basisElements(FactorModuleBasis)" -- see basisElements -- extract the matrix of generators from an involutive basis or factor module basis
    • "basisElements(InvolutiveBasis)" -- see basisElements -- extract the matrix of generators from an involutive basis or factor module basis
    • "factorModuleBasis(InvolutiveBasis)" -- see factorModuleBasis -- enumerate standard monomials
    • "invNoetherNormalization(GroebnerBasis)" -- see invNoetherNormalization -- Noether normalization
    • "invNoetherNormalization(Ideal)" -- see invNoetherNormalization -- Noether normalization
    • "invNoetherNormalization(InvolutiveBasis)" -- see invNoetherNormalization -- Noether normalization
    • "invNoetherNormalization(Matrix)" -- see invNoetherNormalization -- Noether normalization
    • "invNoetherNormalization(Module)" -- see invNoetherNormalization -- Noether normalization
    • "invReduce(Matrix,InvolutiveBasis)" -- see invReduce -- compute normal form modulo involutive basis by involutive reduction
    • "invReduce(RingElement,InvolutiveBasis)" -- see invReduce -- compute normal form modulo involutive basis by involutive reduction
    • "invSyzygies(InvolutiveBasis)" -- see invSyzygies -- compute involutive basis of syzygies
    • "isPommaretBasis(InvolutiveBasis)" -- see isPommaretBasis -- check whether or not a given Janet basis is also a Pommaret basis
    • "janetBasis(ChainComplex,ZZ)" -- see janetBasis -- compute Janet basis for an ideal or a submodule of a free module
    • "janetBasis(GroebnerBasis)" -- see janetBasis -- compute Janet basis for an ideal or a submodule of a free module
    • "janetBasis(Ideal)" -- see janetBasis -- compute Janet basis for an ideal or a submodule of a free module
    • "janetBasis(Matrix)" -- see janetBasis -- compute Janet basis for an ideal or a submodule of a free module
    • "janetMultVar(List)" -- see janetMultVar -- return table of multiplicative variables for given module elements as determined by Janet division
    • "janetMultVar(Matrix)" -- see janetMultVar -- return table of multiplicative variables for given module elements as determined by Janet division
    • "janetResolution(Ideal)" -- see janetResolution -- construct a free resolution for a given ideal or module using Janet bases
    • "janetResolution(InvolutiveBasis)" -- see janetResolution -- construct a free resolution for a given ideal or module using Janet bases
    • "janetResolution(Matrix)" -- see janetResolution -- construct a free resolution for a given ideal or module using Janet bases
    • "janetResolution(Module)" -- see janetResolution -- construct a free resolution for a given ideal or module using Janet bases
    • "multVar(ChainComplex,ZZ)" -- see multVar -- extract the sets of multiplicative variables for each generator (in several contexts)
    • "multVar(FactorModuleBasis)" -- see multVar -- extract the sets of multiplicative variables for each generator (in several contexts)
    • "multVar(InvolutiveBasis)" -- see multVar -- extract the sets of multiplicative variables for each generator (in several contexts)
    • "pommaretMultVar(List)" -- see pommaretMultVar -- return table of multiplicative variables for given module elements as determined by Pommaret division
    • "pommaretMultVar(Matrix)" -- see pommaretMultVar -- return table of multiplicative variables for given module elements as determined by Pommaret division
  • Symbols
    • Involutive -- compute a (usually non-minimal) resolution using involutive bases
    • multVars -- key in the cache table of a differential in a Janet resolution
    • PermuteVariables -- ensure that the last dim(I) var's are algebraically independent modulo I

For the programmer

The object InvolutiveBases is a package.