C = cone P
The polyhedron is embedded at height one, then the cone is taken over it.
i1 : P = hypercube 2 o1 = P o1 : Polyhedron
i2 : vertices P o2 = | -1 1 -1 1 | | -1 -1 1 1 | 2 4 o2 : Matrix QQ <--- QQ
i3 : C = cone P o3 = C o3 : Cone
i4 : rays C o4 = | 1 1 1 1 | | -1 1 -1 1 | | -1 -1 1 1 | 3 4 o4 : Matrix ZZ <--- ZZ