Description
inInterior checks if the smallest face of the
Cone or the
Polyhedron containing
p is the
Cone or the
Polyhedron itself. For this the number of rows of
p must equal the ambient dimension of the second argument.
i1 : P = cyclicPolytope(3,5)
o1 = P
o1 : Polyhedron
|
i2 : p = matrix{{2},{4},{8}}
o2 = | 2 |
| 4 |
| 8 |
3 1
o2 : Matrix ZZ <--- ZZ
|
i3 : q = matrix{{2},{6},{20}}
o3 = | 2 |
| 6 |
| 20 |
3 1
o3 : Matrix ZZ <--- ZZ
|
i4 : inInterior(p,P)
o4 = false
|
i5 : inInterior(q,P)
o5 = true
|