Macaulay2 » Documentation
Packages » Polyhedra :: interiorLatticePoints
next | previous | forward | backward | up | index | toc

interiorLatticePoints -- computes the lattice points in the relative interior of a polytope

Synopsis

Description

latticePoints can only be applied to polytopes, i.e. compact polyhedra. It returns all lattice points in the relative interior of the polytope.
i1 : P = crossPolytope(3,2)

o1 = P

o1 : Polyhedron
i2 : interiorLatticePoints P

o2 = {| 0 |, | 1 |, | 0 |, | -1 |, 0, | 0  |, | 0  |}
      | 0 |  | 0 |  | 1 |  | 0  |     | -1 |  | 0  |
      | 1 |  | 0 |  | 0 |  | 0  |     | 0  |  | -1 |

o2 : List
i3 : Q = cyclicPolytope(2,4)

o3 = Q

o3 : Polyhedron
i4 : interiorLatticePoints Q

o4 = {| 1 |, | 2 |}
      | 2 |  | 5 |

o4 : List

Ways to use interiorLatticePoints :

For the programmer

The object interiorLatticePoints is a method function.