Macaulay2 » Documentation
Packages » Polyhedra :: polyhedralComplex(Fan)
next | previous | forward | backward | up | index | toc

polyhedralComplex(Fan) -- Turn a fan into a polyhedral complex

Synopsis

Description

Every fan is naturally a polyhedral complex, since every cone is naturally a polyhedron. This method converts a fan into a polyhedral complex.

i1 : F = normalFan hypercube 2

o1 = F

o1 : Fan
i2 : rays F

o2 = | -1 1 0  0 |
     | 0  0 -1 1 |

              2        4
o2 : Matrix ZZ  <--- ZZ
i3 : maxCones F

o3 = {{1, 3}, {0, 3}, {1, 2}, {0, 2}}

o3 : List
i4 : PC = polyhedralComplex F

o4 = PC

o4 : PolyhedralComplex
i5 : vertices PC

o5 = 0

              2        1
o5 : Matrix QQ  <--- QQ
i6 : rays PC

o6 = | -1 1 0  0 |
     | 0  0 -1 1 |

              2        4
o6 : Matrix QQ  <--- QQ
i7 : maxPolyhedra PC

o7 = {({0}, {1, 3}), ({0}, {0, 3}), ({0}, {1, 2}), ({0}, {0, 2})}

o7 : List

Ways to use this method: