PC = polyhedralComplex F
Every fan is naturally a polyhedral complex, since every cone is naturally a polyhedron. This method converts a fan into a polyhedral complex.
i1 : F = normalFan hypercube 2 o1 = F o1 : Fan
i2 : rays F o2 = | -1 1 0 0 | | 0 0 -1 1 | 2 4 o2 : Matrix ZZ <--- ZZ
i3 : maxCones F o3 = {{1, 3}, {0, 3}, {1, 2}, {0, 2}} o3 : List
i4 : PC = polyhedralComplex F o4 = PC o4 : PolyhedralComplex
i5 : vertices PC o5 = 0 2 1 o5 : Matrix QQ <--- QQ
i6 : rays PC o6 = | -1 1 0 0 | | 0 0 -1 1 | 2 4 o6 : Matrix QQ <--- QQ
i7 : maxPolyhedra PC o7 = {({0}, {1, 3}), ({0}, {0, 3}), ({0}, {1, 2}), ({0}, {0, 2})} o7 : List