Macaulay2
»
Documentation
Packages
»
Macaulay2Doc
»
commutative algebra
next
|
previous
|
forward
|
backward
|
up
|
index
|
toc
commutative algebra
Menu
Gröbner bases
normal forms
elimination of variables
IntegralClosure
-- routines for integral closure of affine domains and ideals
PrimaryDecomposition
-- primary decomposition and associated primes routines for ideals and modules
hilbertFunction
-- the Hilbert function
hilbertSeries
-- compute the Hilbert series
hilbertPolynomial
-- compute the Hilbert polynomial
syz
-- the syzygy matrix
koszul
-- Koszul complex or specific matrix in the Koszul complex
eagonNorthcott
-- Eagon-Northcott complex of a matrix of linear forms
regularity
-- compute the Castelnuovo-Mumford regularity
presentation
-- presentation of a module or ring
resolution
-- projective resolution
quotient
-- quotient or division
quotient'
-- factor a map through another with the same source
quotientRemainder
-- matrix quotient and remainder
quotientRemainder'
-- matrix quotient and remainder (opposite)
remainder
-- matrix remainder
remainder'
-- matrix remainder (opposite)
pseudoRemainder
-- compute the pseudo-remainder
rank
-- compute the rank
dim
-- compute the Krull dimension
codim
-- compute the codimension
pdim
-- compute the projective dimension
depth
-- depth of an object
height
-- height of an object
length
-- length of an object
complete
trim
-- minimize generators and relations
prune
-- prune, e.g., compute a minimal presentation
numgens
-- the number of generators
mingens
-- minimal generator matrix
minimize
minimalPresentation
-- compute a minimal presentation
tensor
-- tensor product
directSum
-- direct sum of modules or maps
directProduct
-- direct product
monomialCurveIdeal
-- make the ideal of a monomial curve
isBorel
-- whether an ideal is fixed by upper triangular changes of coordinates
isCommutative
-- whether a ring is commutative
isAffineRing
-- whether something is an affine ring
The source of this document is in
Macaulay2Doc/ov_examples.m2:129:0
.