Macaulay2 » Documentation
Packages » Macaulay2Doc :: resolution(Ideal)
next | previous | forward | backward | up | index | toc

resolution(Ideal) -- compute a projective resolution of (the quotient ring corresponding to) an ideal

Synopsis

Description

i1 : R = ZZ[a..d]

o1 = R

o1 : PolynomialRing
i2 : I = ideal(a,b,c,d)

o2 = ideal (a, b, c, d)

o2 : Ideal of R
i3 : C = res I

      1      4      6      4      1
o3 = R  <-- R  <-- R  <-- R  <-- R  <-- 0
                                         
     0      1      2      3      4      5

o3 : ChainComplex
i4 : C_2

      6
o4 = R

o4 : R-module, free, degrees {6:2}
i5 : C.dd_2

o5 = {1} | -b 0  -c 0  0  -d |
     {1} | a  -c 0  0  -d 0  |
     {1} | 0  b  a  -d 0  0  |
     {1} | 0  0  0  c  b  a  |

             4      6
o5 : Matrix R  <-- R

See also

Ways to use this method: