Macaulay2 » Documentation
Packages » SymbolicPowers :: waldschmidt(...,SampleSize=>...)
next | previous | forward | backward | up | index | toc

waldschmidt(...,SampleSize=>...) -- optional parameter used for approximating asymptotic invariants that are defined as limits.

Description

For ideals that are not monomial, we give an approximation of the Waldschmidt constant by taking the minimum value of $\frac{\alpha(I^{(n)})}{n}$ over a finite number of exponents $n$, namely for $n$ from 1 to the optional parameter SampleSize. Similarly the SampleSize is used to give an approximation for the asymptotic regularity by computing the smallest value of $\frac{reg(I^{(n)})}{n}$ for $n$ from 1 to the SampleSize.

i1 : R = QQ[x,y,z];
i2 : J = ideal (x*(y^3-z^3),y*(z^3-x^3),z*(x^3-y^3));

o2 : Ideal of R
i3 : waldschmidt(J, SampleSize=>5)

o3 = 3

o3 : QQ

Functions with optional argument named SampleSize:

Further information

  • Default value: 5
  • Function: waldschmidt -- computes the Waldschmidt constant for a homogeneous ideal.
  • Option key: SampleSize -- optional parameter used for approximating asymptotic invariants that are defined as limits.

The source of this document is in SymbolicPowers.m2:1552:0.