Macaulay2 » Documentation
Packages » Varieties :: cotangentSheaf(ProjectiveVariety)
next | previous | forward | backward | up | index | toc

cotangentSheaf(ProjectiveVariety) -- cotangent sheaf of a projective variety

Synopsis

Description

This function computes the cotangent sheaf of the projective variety X.

As an example we verify Gauss-Bonnet's theorem on a plane quartic curve:
i1 : X=Proj(QQ[x,y,z]/(x^4+y^4+z^4))

o1 = X

o1 : ProjectiveVariety
i2 : genus(X)

o2 = 3
i3 : omega = cotangentSheaf(X)

        1
o3 = OO  (1)
       X

o3 : coherent sheaf on X, free of rank 1
i4 : degree omega

o4 = 4

See also

Ways to use this method: