next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SVDComplexes :: euclideanDistance

euclideanDistance -- compute the euclidean distance of two chain complexes

Synopsis

Description

Compute the distance in the L^2-norm of two complexes viewed as a sequence of matrices

i1 : needsPackage "RandomComplexes"

o1 = RandomComplexes

o1 : Package
i2 : setRandomSeed "a good example";
i3 : h={2,3,5,2}

o3 = {2, 3, 5, 2}

o3 : List
i4 : r={4,3,3}

o4 = {4, 3, 3}

o4 : List
i5 : elapsedTime C=randomChainComplex(h,r,Height=>5,ZeroMean=>true)
 -- 0.00187309 seconds elapsed

       6       10       11       5
o5 = ZZ  <-- ZZ   <-- ZZ   <-- ZZ
                                
     0       1        2        3

o5 : ChainComplex
i6 : C.dd^2

           6          11
o6 = 0 : ZZ  <----- ZZ   : 2
                0

           10          5
     1 : ZZ   <----- ZZ  : 3
                 0

o6 : ChainComplexMap
i7 : CR=(C**RR_53)

         6         10         11         5
o7 = RR    <-- RR     <-- RR     <-- RR
       53        53         53         53
                                      
     0         1          2          3

o7 : ChainComplex
i8 : h=(SVDHomology CR)_0

o8 = HashTable{0 => 2}
               1 => 3
               2 => 5
               3 => 2

o8 : HashTable
i9 : D=disturb(C,1e-2,Strategy=>Discrete)

         6         10         11         5
o9 = RR    <-- RR     <-- RR     <-- RR
       53        53         53         53
                                      
     0         1          2          3

o9 : ChainComplex
i10 : C.dd_1

o10 = | -3 4  -4 -2 0  2  -4 -1 -1 -2 |
      | -4 4  -3 -1 -2 1  -2 -1 1  -6 |
      | -1 -4 2  2  0  -2 0  5  -1 -2 |
      | 2  -2 3  -1 4  1  -1 -3 7  5  |
      | -5 2  -3 -3 4  3  -9 0  4  -1 |
      | 2  4  -3 -3 2  3  -2 -5 -1 6  |

               6        10
o10 : Matrix ZZ  <--- ZZ
i11 : D.dd_1

o11 = | -3.03 4.04  -3.96 -2.02 0     2.02  -3.96 -.99  -1.01 -1.98 |
      | -4.04 4.04  -3.03 -1.01 -1.98 1.01  -1.98 -.99  1.01  -5.94 |
      | -.99  -4.04 1.98  1.98  0     -2.02 0     4.95  -1.01 -2.02 |
      | 1.98  -2.02 3.03  -.99  4.04  .99   -1.01 -2.97 6.93  5.05  |
      | -4.95 2.02  -3.03 -2.97 4.04  2.97  -9.09 0     4.04  -.99  |
      | 2.02  4.04  -2.97 -3.03 2.02  3.03  -1.98 -4.95 -1.01 5.94  |

                 6          10
o11 : Matrix RR    <--- RR
               53         53
i12 : D.dd^2

              6                                                                                                        11
o12 = 0 : RR    <------------------------------------------------------------------------------------------------- RR     : 2
            53     | .404    -1.0068 1.5192  1.1538  1.9168  -.96   .463   -.5122  .6336        -2.0516 1.8312 |     53
                   | .0646   -1.1216 .8444   1.6532  1.8214  -.2892 .4242  -1.2694 -7.10543e-15 -2.2028 1.676  |
                   | -.1616  .2424   -1.3062 -.932   -1.1766 .5156  -.524  .4172   -1.12        2.0808  -.198  |
                   | .4674   -.5608  .3608   -1.2064 -.004   -.7272 .1204  1.2226  1.0408       -.1148  -.3548 |
                   | -1.0218 -.7936  -.4102  -.2552  -.0934  -.1212 -.1192 1.031   -2.0768      1.2952  -.2756 |
                   | -.1818  1.23    1.303   1.7906  .596    .1688  .5644  -1.0064 .3944        -1.2468 -.3224 |

              10                                                      5
      1 : RR     <----------------------------------------------- RR    : 3
            53      | -.6666  -.2352  -3.0378 .1148   -.2808  |     53
                    | -4.9212 -3.1936 3.2648  -.5656  -.0446  |
                    | -.948   -.2004  1.4232  -.4356  -1.6118 |
                    | .0082   .7928   -.6338  .6336   -3.4756 |
                    | -.96    -1.0344 -.906   -.5544  1.8058  |
                    | -2.7814 -.6764  1.3226  .358    -3.0424 |
                    | -2.8502 -1.7236 1.2766  -.8808  .2148   |
                    | -1.7776 -.9696  -.6352  -1.2024 1.158   |
                    | -.5156  -.4808  .1528   -.4008  .7854   |
                    | -2.7992 -1.0312 2.1204  .2796   -2.8468 |

o12 : ChainComplexMap
i13 : C'=projectToComplex(D,h)

          6         10         11         5
o13 = RR    <-- RR     <-- RR     <-- RR
        53        53         53         53
                                       
      0         1          2          3

o13 : ChainComplex
i14 : C'.dd^2

              6                                                                                                                                                             11
o14 = 0 : RR    <------------------------------------------------------------------------------------------------------------------------------------------------------ RR     : 2
            53     | 0            3.55271e-15  3.55271e-15  0            7.10543e-15  0            -8.88178e-16 7.10543e-15  -1.42109e-14 7.10543e-15  -1.06581e-14 |     53
                   | -1.06581e-14 2.13163e-14  -1.77636e-14 3.55271e-15  -7.10543e-15 7.10543e-15  -8.88178e-16 1.42109e-14  -2.84217e-14 2.84217e-14  -5.68434e-14 |
                   | 3.55271e-15  -1.77636e-14 1.77636e-14  3.28626e-14  9.76996e-15  -1.06581e-14 9.65894e-15  -2.39808e-14 3.01981e-14  -2.4869e-14  3.28626e-14  |
                   | -1.77636e-15 3.55271e-15  -2.30926e-14 -3.55271e-14 -2.4869e-14  3.55271e-15  -1.39888e-14 2.4869e-14   -2.13163e-14 2.84217e-14  -3.19744e-14 |
                   | 2.13163e-14  -2.13163e-14 0            -2.84217e-14 2.13163e-14  -2.84217e-14 1.77636e-15  4.26326e-14  3.55271e-14  -2.84217e-14 7.10543e-15  |
                   | -3.55271e-15 1.77636e-14  -1.42109e-14 -1.06581e-14 -3.55271e-15 2.4869e-14   -4.44089e-15 -3.55271e-15 -2.4869e-14  2.13163e-14  -2.4869e-14  |

              10                                                                               5
      1 : RR     <------------------------------------------------------------------------ RR    : 3
            53      | 4.73302e-14  9.32587e-15  1.87073e-14  -1.42109e-14 4.26326e-14  |     53
                    | 8.08535e-14  2.49544e-14  -2.99785e-14 -1.00198e-14 5.57748e-14  |
                    | 5.47479e-15  8.25728e-15  -2.79152e-14 7.10543e-15  -1.77636e-14 |
                    | -2.07057e-14 -1.09912e-14 1.33244e-14  -3.55271e-15 -8.88178e-15 |
                    | 9.27314e-14  3.96488e-14  -7.43849e-15 -2.13163e-14 7.28306e-14  |
                    | -3.07046e-14 -1.87628e-14 3.33067e-15  2.13163e-14  -3.19744e-14 |
                    | 5.26246e-14  1.91513e-14  -9.39179e-15 0            3.24185e-14  |
                    | 1.06262e-13  3.59227e-14  -8.47933e-15 -1.77636e-15 6.4837e-14   |
                    | 2.60889e-14  7.08721e-15  -2.59124e-17 -1.72085e-15 2.54796e-14  |
                    | 2.9074e-15   2.23432e-15  -5.24511e-14 1.06581e-14  -2.4869e-14  |

o14 : ChainComplexMap
i15 : euclideanDistance(C',D)

o15 = .448104803679267

o15 : RR (of precision 53)
i16 : euclideanDistance(CR,D)

o16 = .320600000000001

o16 : RR (of precision 53)
i17 : euclideanDistance(C',CR)

o17 = .476857690728906

o17 : RR (of precision 53)

Caveat

See also

Ways to use euclideanDistance :

For the programmer

The object euclideanDistance is a method function.