Macaulay2 » Documentation
Packages » A1BrouwerDegrees :: getAnisotropicPart
next | previous | forward | backward | up | index | toc

getAnisotropicPart -- returns the anisotropic part of a Grothendieck-Witt class

Description

By the Witt Decomposition Theorem, any non-degenerate form decomposes uniquely as $\beta \cong n \mathbb{H} \oplus \beta_a$ where the form $\beta_a$ is anisotropic. We compute the anisotropic part $\beta_a$ inductively by reference to its anisotropic dimension. Over the complex numbers and real numbers this is straightforward, and over finite fields it is a fairly routine computation. Over the rational numbers some more sophisticated algorithms are needed from the literature. For this we implement algorithms developed for number fields by Koprowski and Rothkegel [KR23].

i1 : alpha = makeDiagonalForm(QQ, (3,-3,2,5,1,-9));
i2 : getAnisotropicPart alpha

o2 = | 2 0 |
     | 0 5 |

o2 : GrothendieckWittClass

Citations:

See also

Ways to use getAnisotropicPart:

  • getAnisotropicPart(GrothendieckWittClass)
  • getAnisotropicPart(Matrix)

For the programmer

The object getAnisotropicPart is a method function.


The source of this document is in A1BrouwerDegrees/Documentation/DecompositionDoc.m2:85:0.