Description
Definition. Let D = A_{2n}(K) = K<x_1,...,x_n,d_1,...,d_n> be a Weyl algebra. The Bernstein-Sato polynomial of a polynomial f is defined to be the monic generator of the ideal of all polynomials b(s) in K[s] such that b(s) f^s = Q(s,x,d) f^{s+1} where Q lives in D[s].
Algorithm. Let I_f = D<t,dt>*<t-f, d_1+df/dx_1*dt, ..., d_n+df/dx_n*dt> Let B(s) = bFunction(I, {1, 0, ..., 0}) where 1 in the weight that corresponds to dt. Then the global b-function is b_f = B(-s-1)
i1 : R = QQ[x]
o1 = R
o1 : PolynomialRing
|
i2 : f = x^10
10
o2 = x
o2 : R
|
i3 : b = globalBFunction f
10 11 9 66 8 363 7 157773 6 180411 5 341693 4 16819 3
o3 = s + --s + --s + ---s + ------s + ------s + ------s + -----s +
2 5 20 10000 20000 100000 20000
------------------------------------------------------------------------
1594197 2 66429 567
--------s + -------s + -------
12500000 6250000 1562500
o3 : QQ[s]
|
i4 : factorBFunction b
1 1 2 3 4 1 3 7 9
o4 = (s + 1)(s + -)(s + -)(s + -)(s + -)(s + -)(s + --)(s + --)(s + --)(s + --)
2 5 5 5 5 10 10 10 10
o4 : Expression of class Product
|