i1 : W = QQ[X, dX, Y, dY, Z, dZ, WeylAlgebra=>{X=>dX, Y=>dY, Z=>dZ}]
o1 = W
o1 : PolynomialRing, 3 differential variable(s)
|
i3 : h = localCohom I
o3 = HashTable{0 => subquotient (| dZ dY dX |, | dZ dY dX |) }
1 => subquotient (| 0 0 0 -dXdY-dXdZ dXY-dXZ XdX+1 0 0 XdXdZ-dY -XdXZ-Y |, | XY-XZ dY+dZ XdX+YdZ-ZdZ -YdZ+ZdZ+1 0 0 0 |)
| -YdY-ZdZ-2 -XdX-1 -3dXZdZ-3dX -dXZdZ-dX dXYZ XdXZ+Z dXYdY+dXZdZ+2dX XdXdY+dY XdXZdZ+XdX -XdXZ2-YZ-Z2 | | XYZ 0 0 0 YdY-ZdZ XdX-ZdZ ZdZ+1 |
2 => cokernel | -XYZ XY-XZ 3XdX-2YdY-2ZdZ YdY+ZdZ+3 Y2dY-2YdYZ-2YZdZ+Z2dZ |
o3 : HashTable
|