Macaulay2 » Documentation
Packages » BernsteinSato :: polynomialAnnihilator
next | previous | forward | backward | up | index | toc

polynomialAnnihilator -- annihilator of a polynomial in the Weyl algebra

Synopsis

Description

i1 : makeWA(QQ[x,y])

o1 = QQ[x..y, dx, dy]

o1 : PolynomialRing, 2 differential variable(s)
i2 : f = x^2-y^3

        3    2
o2 = - y  + x

o2 : QQ[x..y, dx, dy]
i3 : I = polynomialAnnihilator f

               3      2            3      2       2    4    4
o3 = ideal (- y dx + x dx - 2x, - y dy + x dy + 3y , dx , dy )

o3 : Ideal of QQ[x..y, dx, dy]

Caveat

The input f should be an element of a Weyl algebra, and not an element of a commutative polynomial ring. However, f should only involve commutative variables.

See also

Ways to use polynomialAnnihilator:

For the programmer

The object polynomialAnnihilator is a method function.