Macaulay2 » Documentation
Packages » BettiCharacters > BettiCharacters Example 4
next | previous | forward | backward | up | index | toc

BettiCharacters Example 4 -- a multigraded example

Consider the polynomial ring $\mathbb{Q} [x_1,x_2,y_1,y_2,y_3]$ with the variables $x_i$ of bidegree {1,0} and the variables $y_j$ of bidegree {0,1}. We consider the action of a product of two symmetric groups, the first permuting the $x_i$ variables and the second permuting the $y_j$ variables. We compute the Betti characters of this group on the resolution of the bigraded irrelevant ideal $\langle x_1,x_2\rangle \cap \langle y_1,y_2,y_3\rangle$. This is also the edge ideal of the complete bipartite graph $K_{2,3}$.

i1 : R = QQ[x_1,x_2,y_1,y_2,y_3,Degrees=>{2:{1,0},3:{0,1}}]

o1 = R

o1 : PolynomialRing
i2 : I = intersect(ideal(x_1,x_2),ideal(y_1,y_2,y_3))

o2 = ideal (x y , x y , x y , x y , x y , x y )
             2 3   1 3   2 2   1 2   2 1   1 1

o2 : Ideal of R
i3 : RI = res I

      1      6      9      5      1
o3 = R  <-- R  <-- R  <-- R  <-- R  <-- 0
                                         
     0      1      2      3      4      5

o3 : ChainComplex
i4 : G = {
         matrix{{x_1,x_2,y_2,y_3,y_1}},
         matrix{{x_1,x_2,y_2,y_1,y_3}},
         matrix{{x_1,x_2,y_1,y_2,y_3}},
         matrix{{x_2,x_1,y_2,y_3,y_1}},
         matrix{{x_2,x_1,y_2,y_1,y_3}},
         matrix{{x_2,x_1,y_1,y_2,y_3}}
         }

o4 = {| x_1 x_2 y_2 y_3 y_1 |, | x_1 x_2 y_2 y_1 y_3 |, | x_1 x_2 y_1 y_2 y_3
     ------------------------------------------------------------------------
     |, | x_2 x_1 y_2 y_3 y_1 |, | x_2 x_1 y_2 y_1 y_3 |, | x_2 x_1 y_1 y_2
     ------------------------------------------------------------------------
     y_3 |}

o4 : List
i5 : A = action(RI,G)

o5 = ChainComplex with 6 actors

o5 : ActionOnComplex
i6 : character A

o6 = Character over R
      
     (0, {0, 0}) => | 1 1 1 1 1 1 |
     (1, {1, 1}) => | 0 2 6 0 0 0 |
     (2, {1, 2}) => | 0 -2 6 0 0 0 |
     (2, {2, 1}) => | 0 1 3 0 -1 -3 |
     (3, {1, 3}) => | 2 -2 2 0 0 0 |
     (3, {2, 2}) => | 0 -1 3 0 1 -3 |
     (4, {2, 3}) => | 1 -1 1 -1 1 -1 |

o6 : Character

We can also compute the characters of some graded components of the quotient by this ideal.

i7 : Q = R/I

o7 = Q

o7 : QuotientRing
i8 : B = action(Q,G)

o8 = QuotientRing with 6 actors

o8 : ActionOnGradedModule
i9 : character(B,{1,0})

o9 = Character over R
      
     (0, {1, 0}) => | 2 2 2 0 0 0 |

o9 : Character
i10 : character(B,{0,1})

o10 = Character over R
       
      (0, {0, 1}) => | 0 1 3 0 1 3 |

o10 : Character
i11 : character(B,{4,0})

o11 = Character over R
       
      (0, {4, 0}) => | 5 5 5 1 1 1 |

o11 : Character
i12 : character(B,{0,5})

o12 = Character over R
       
      (0, {0, 5}) => | 0 3 21 0 3 21 |

o12 : Character

Note that all mixed degree components are zero.

i13 : character(B,{1,1})

o13 = Character over R

o13 : Character
i14 : character(B,{2,1})

o14 = Character over R

o14 : Character
i15 : character(B,{1,2})

o15 = Character over R

o15 : Character