i1 : R = QQ[x_1..x_3]
o1 = R
o1 : PolynomialRing
|
i2 : I = ideal(x_1+x_2+x_3)
o2 = ideal(x + x + x )
1 2 3
o2 : Ideal of R
|
i3 : J = ideal(x_1-x_2,x_1-x_3)
o3 = ideal (x - x , x - x )
1 2 1 3
o3 : Ideal of R
|
i4 : S3 = {matrix{{x_2,x_3,x_1}},
matrix{{x_2,x_1,x_3}},
matrix{{x_1,x_2,x_3}} }
o4 = {| x_2 x_3 x_1 |, | x_2 x_1 x_3 |, | x_1 x_2 x_3 |}
o4 : List
|
i5 : A = action(I,S3)
o5 = Ideal with 3 actors
o5 : ActionOnGradedModule
|
i6 : B = action(J,S3)
o6 = Ideal with 3 actors
o6 : ActionOnGradedModule
|
i7 : a = character(A,1)
o7 = Character over R
(0, {1}) => | 1 1 1 |
o7 : Character
|
i8 : b = character(B,1)
o8 = Character over R
(0, {1}) => | -1 0 2 |
o8 : Character
|
i9 : a ++ b
o9 = Character over R
(0, {1}) => | 0 1 3 |
o9 : Character
|
i10 : K = ideal(x_1,x_2,x_3)
o10 = ideal (x , x , x )
1 2 3
o10 : Ideal of R
|
i11 : C = action(K,S3)
o11 = Ideal with 3 actors
o11 : ActionOnGradedModule
|
i12 : c = character(C,1)
o12 = Character over R
(0, {1}) => | 0 1 3 |
o12 : Character
|
i13 : a ++ b === c
o13 = true
|