Given a ring map f and a cell complex C, then for each label, viewed as a module M, this function constructs a cell complex whose new labels are f ** M
i1 : S = QQ[x,y,z];
|
i2 : R = QQ[a,b,c];
|
i3 : f = map(R,S,matrix{{a,b,c^2}});
o3 : RingMap R <-- S
|
i4 : v1 = newCell({},x);
|
i5 : v2 = newCell({},y);
|
i6 : v3 = newCell({},z);
|
i7 : e12 = newCell({v1,v2});
|
i8 : e23 = newCell({v2,v3});
|
i9 : C = cellComplex(S,{e12,e23});
|
i10 : cells(1,C)/cellLabel
o10 = {x*y, y*z}
o10 : List
|
i11 : D = f ** C;
|
i12 : cells(1,D)/cellLabel
2
o12 = {a*b, b*c }
o12 : List
|