For example, below we construct the Taylor complex for the monomial ideal $\langle x,y,z\rangle$
i1 : R = QQ[x,y,z];
|
i2 : vx = newSimplexCell({},x);
|
i3 : vy = newSimplexCell({},y);
|
i4 : vz = newSimplexCell({},z);
|
i5 : exy = newSimplexCell {vx,vy};
|
i6 : exz = newSimplexCell {vx,vz};
|
i7 : eyz = newSimplexCell {vy,vz};
|
i8 : f = newSimplexCell {exy,exz,eyz};
|
i9 : C = cellComplex(R,{f});
|
i10 : d1 = boundaryMap_1 C
o10 = {1} | y 0 z |
{1} | -x z 0 |
{1} | 0 -y -x |
o10 : Matrix
|
i11 : d2 = boundaryMap_2 C
o11 = {2} | z |
{2} | x |
{2} | -y |
o11 : Matrix
|
i12 : assert(d1*d2==0)
|