Macaulay2 » Documentation
Packages » Chordal :: RingMap ChordalNet
next | previous | forward | backward | up | index | toc

RingMap ChordalNet -- apply ring map to a chordal network

Synopsis

Description

i1 : R = QQ[x_0..x_3, MonomialOrder=>Lex];
i2 : I = ideal {x_0^3-x_0, x_0*x_2-x_2, x_1-x_2, x_2^2-x_2, x_2*x_3^2-x_3};

o2 : Ideal of R
i3 : N = chordalNet I

                          3                   2
o3 = ChordalNet{ x  => {{x  - x , x x  - x , x  - x }} }
                  0       0    0   0 2    2   2    2
                                   2
                 x  => {{x  - x , x  - x }}
                  1       1    2   2    2
                           2
                 x  => {x x  - x }
                  2      2 3    3
                 x  => { }
                  3

o3 : ChordalNet
i4 : S = QQ[y_0..y_3, MonomialOrder=>Lex];
i5 : f = map(S,R,gens S)

o5 = map (S, R, {y , y , y , y })
                  0   1   2   3

o5 : RingMap S <-- R
i6 : f N

                          3                   2
o6 = ChordalNet{ y  => {{y  - y , y y  - y , y  - y }} }
                  0       0    0   0 2    2   2    2
                                   2
                 y  => {{y  - y , y  - y }}
                  1       1    2   2    2
                           2
                 y  => {y y  - y }
                  2      2 3    3
                 y  => { }
                  3

o6 : ChordalNet

      

See also

Ways to use this method: