The shifted complex $D$ is defined by $D_j = C_{i+j}$ for all $j$ and the sign of the differential is changed if $i$ is odd.
The shifted complex map $g$ is defined by $g_j = f_{i+j}$ for all $j$.
The shift defines a natural automorphism on the category of complexes. Topologists often call the shifted complex $C[1]$ the suspension of $C$.
i10 : C2 = freeResolution (S^1/(a^2, b^2, c^2, d^2))
1 4 6 4 1
o10 = S <-- S <-- S <-- S <-- S
0 1 2 3 4
o10 : Complex
|
i11 : C3 = freeResolution (S^1/(a^2, b^3, c^4, d^5))
1 4 6 4 1
o11 = S <-- S <-- S <-- S <-- S
0 1 2 3 4
o11 : Complex
|
i12 : f2 = extend(C, C2, map(C_0, C2_0, 1))
1 1
o12 = 0 : S <--------- S : 0
| 1 |
4 4
1 : S <------------------- S : 1
{1} | a 0 0 0 |
{1} | 0 b 0 0 |
{1} | 0 0 c 0 |
{1} | 0 0 0 d |
6 6
2 : S <----------------------------- S : 2
{2} | ab 0 0 0 0 0 |
{2} | 0 ac 0 0 0 0 |
{2} | 0 0 bc 0 0 0 |
{2} | 0 0 0 ad 0 0 |
{2} | 0 0 0 0 bd 0 |
{2} | 0 0 0 0 0 cd |
4 4
3 : S <--------------------------- S : 3
{3} | abc 0 0 0 |
{3} | 0 abd 0 0 |
{3} | 0 0 acd 0 |
{3} | 0 0 0 bcd |
1 1
4 : S <---------------- S : 4
{4} | abcd |
o12 : ComplexMap
|
i13 : f3 = extend(C2, C3, map(C2_0, C3_0, 1))
1 1
o13 = 0 : S <--------- S : 0
| 1 |
4 4
1 : S <--------------------- S : 1
{2} | 1 0 0 0 |
{2} | 0 b 0 0 |
{2} | 0 0 c2 0 |
{2} | 0 0 0 d3 |
6 6
2 : S <-------------------------------- S : 2
{4} | b 0 0 0 0 0 |
{4} | 0 c2 0 0 0 0 |
{4} | 0 0 bc2 0 0 0 |
{4} | 0 0 0 d3 0 0 |
{4} | 0 0 0 0 bd3 0 |
{4} | 0 0 0 0 0 c2d3 |
4 4
3 : S <------------------------------ S : 3
{6} | bc2 0 0 0 |
{6} | 0 bd3 0 0 |
{6} | 0 0 c2d3 0 |
{6} | 0 0 0 bc2d3 |
1 1
4 : S <----------------- S : 4
{8} | bc2d3 |
o13 : ComplexMap
|
i14 : assert((f2*f3)[1] == (f2[1]) * (f3[1]))
|
i15 : assert(source(f2[1]) == C2[1])
|
i16 : assert(target(f2[1]) == C[1])
|