isShortExactSequence(g, f)
A short exact sequence of modules \[ 0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0\] consists of two homomorphisms of modules $f \colon L \to M$ and $g \colon M \to N$ such that $g f = 0$, $\operatorname{image} f = \operatorname{ker} g$, $\operatorname{ker} f = 0$, and $\operatorname{coker} g = 0$.
From a homomorphism $h \colon M \to N$, one obtains a short exact sequence \[ 0 \to \operatorname{image} h \to N \to \operatorname{coker} h \to 0. \]
|
|
|
|
|
Ideal quotients also give rise to short exact sequences.
|
|
|
|
|
|