i8 : A = ZZ/101[x_0, x_1, y_0, y_1, y_2, Degrees => {2:{1,0}, 3:{0,1}}];
|
i9 : I = intersect(ideal(x_0, x_1), ideal(y_0, y_1, y_2))
o9 = ideal (x y , x y , x y , x y , x y , x y )
1 2 0 2 1 1 0 1 1 0 0 0
o9 : Ideal of A
|
i10 : C = freeResolution I
1 6 9 5 1
o10 = A <-- A <-- A <-- A <-- A
0 1 2 3 4
o10 : Complex
|
i11 : D1 = prune truncate({{1,1}}, C)
6 9 5 1
o11 = cokernel {1, 1} | x_0 y_1 0 0 y_0 0 0 0 0 | <-- A <-- A <-- A <-- A
{1, 1} | -x_1 0 y_1 0 0 0 y_0 0 0 |
{1, 1} | 0 -y_2 0 x_0 0 y_0 0 0 0 | 1 2 3 4
{1, 1} | 0 0 -y_2 -x_1 0 0 0 y_0 0 |
{1, 1} | 0 0 0 0 -y_2 -y_1 0 0 x_0 |
{1, 1} | 0 0 0 0 0 0 -y_2 -y_1 -x_1 |
0
o11 : Complex
|
i12 : D2 = truncate({{1,0}}, C)
o12 = image | x_1 x_0 | <-- image {1, 1} | 1 0 0 0 0 0 | <-- image {2, 1} | 1 0 0 0 0 0 0 0 0 | <-- image {2, 2} | 1 0 0 0 0 | <-- image {2, 3} | 1 |
{1, 1} | 0 1 0 0 0 0 | {2, 1} | 0 1 0 0 0 0 0 0 0 | {2, 2} | 0 1 0 0 0 |
0 {1, 1} | 0 0 1 0 0 0 | {1, 2} | 0 0 1 0 0 0 0 0 0 | {2, 2} | 0 0 1 0 0 | 4
{1, 1} | 0 0 0 1 0 0 | {1, 2} | 0 0 0 1 0 0 0 0 0 | {1, 3} | 0 0 0 1 0 |
{1, 1} | 0 0 0 0 1 0 | {2, 1} | 0 0 0 0 1 0 0 0 0 | {1, 3} | 0 0 0 0 1 |
{1, 1} | 0 0 0 0 0 1 | {1, 2} | 0 0 0 0 0 1 0 0 0 |
{1, 2} | 0 0 0 0 0 0 1 0 0 | 3
1 {1, 2} | 0 0 0 0 0 0 0 1 0 |
{1, 2} | 0 0 0 0 0 0 0 0 1 |
2
o12 : Complex
|
i13 : D3 = truncate({{0,1}}, C)
o13 = image | y_2 y_1 y_0 | <-- image {1, 1} | 1 0 0 0 0 0 | <-- image {2, 1} | 1 0 0 0 0 0 0 0 0 | <-- image {2, 2} | 1 0 0 0 0 | <-- image {2, 3} | 1 |
{1, 1} | 0 1 0 0 0 0 | {2, 1} | 0 1 0 0 0 0 0 0 0 | {2, 2} | 0 1 0 0 0 |
0 {1, 1} | 0 0 1 0 0 0 | {1, 2} | 0 0 1 0 0 0 0 0 0 | {2, 2} | 0 0 1 0 0 | 4
{1, 1} | 0 0 0 1 0 0 | {1, 2} | 0 0 0 1 0 0 0 0 0 | {1, 3} | 0 0 0 1 0 |
{1, 1} | 0 0 0 0 1 0 | {2, 1} | 0 0 0 0 1 0 0 0 0 | {1, 3} | 0 0 0 0 1 |
{1, 1} | 0 0 0 0 0 1 | {1, 2} | 0 0 0 0 0 1 0 0 0 |
{1, 2} | 0 0 0 0 0 0 1 0 0 | 3
1 {1, 2} | 0 0 0 0 0 0 0 1 0 |
{1, 2} | 0 0 0 0 0 0 0 0 1 |
2
o13 : Complex
|
i14 : D4 = truncate({{1,0},{0,1}}, C)
o14 = image | y_2 y_1 y_0 x_1 x_0 | <-- image {1, 1} | 1 0 0 0 0 0 | <-- image {2, 1} | 1 0 0 0 0 0 0 0 0 | <-- image {2, 2} | 1 0 0 0 0 | <-- image {2, 3} | 1 |
{1, 1} | 0 1 0 0 0 0 | {2, 1} | 0 1 0 0 0 0 0 0 0 | {2, 2} | 0 1 0 0 0 |
0 {1, 1} | 0 0 1 0 0 0 | {1, 2} | 0 0 1 0 0 0 0 0 0 | {2, 2} | 0 0 1 0 0 | 4
{1, 1} | 0 0 0 1 0 0 | {1, 2} | 0 0 0 1 0 0 0 0 0 | {1, 3} | 0 0 0 1 0 |
{1, 1} | 0 0 0 0 1 0 | {2, 1} | 0 0 0 0 1 0 0 0 0 | {1, 3} | 0 0 0 0 1 |
{1, 1} | 0 0 0 0 0 1 | {1, 2} | 0 0 0 0 0 1 0 0 0 |
{1, 2} | 0 0 0 0 0 0 1 0 0 | 3
1 {1, 2} | 0 0 0 0 0 0 0 1 0 |
{1, 2} | 0 0 0 0 0 0 0 0 1 |
2
o14 : Complex
|
i15 : D5 = truncate({{2,2}}, C)
o15 = image | x_1^2y_2^2 x_0x_1y_2^2 x_0^2y_2^2 x_1^2y_1y_2 x_0x_1y_1y_2 x_0^2y_1y_2 x_1^2y_0y_2 x_0x_1y_0y_2 x_0^2y_0y_2 x_1^2y_1^2 x_0x_1y_1^2 x_0^2y_1^2 x_1^2y_0y_1 x_0x_1y_0y_1 x_0^2y_0y_1 x_1^2y_0^2 x_0x_1y_0^2 x_0^2y_0^2 | <-- image {1, 1} | x_1y_2 x_0y_2 x_1y_1 x_0y_1 x_1y_0 x_0y_0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <-- image {2, 1} | y_2 y_1 y_0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <-- image {2, 2} | 1 0 0 0 0 0 0 | <-- image {2, 3} | 1 |
{1, 1} | 0 0 0 0 0 0 x_1y_2 x_0y_2 x_1y_1 x_0y_1 x_1y_0 x_0y_0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | {2, 1} | 0 0 0 y_2 y_1 y_0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | {2, 2} | 0 1 0 0 0 0 0 |
0 {1, 1} | 0 0 0 0 0 0 0 0 0 0 0 0 x_1y_2 x_0y_2 x_1y_1 x_0y_1 x_1y_0 x_0y_0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | {1, 2} | 0 0 0 0 0 0 x_1 x_0 0 0 0 0 0 0 0 0 0 0 0 0 0 | {2, 2} | 0 0 1 0 0 0 0 | 4
{1, 1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_1y_2 x_0y_2 x_1y_1 x_0y_1 x_1y_0 x_0y_0 0 0 0 0 0 0 0 0 0 0 0 0 | {1, 2} | 0 0 0 0 0 0 0 0 x_1 x_0 0 0 0 0 0 0 0 0 0 0 0 | {1, 3} | 0 0 0 x_1 x_0 0 0 |
{1, 1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_1y_2 x_0y_2 x_1y_1 x_0y_1 x_1y_0 x_0y_0 0 0 0 0 0 0 | {2, 1} | 0 0 0 0 0 0 0 0 0 0 y_2 y_1 y_0 0 0 0 0 0 0 0 0 | {1, 3} | 0 0 0 0 0 x_1 x_0 |
{1, 1} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_1y_2 x_0y_2 x_1y_1 x_0y_1 x_1y_0 x_0y_0 | {1, 2} | 0 0 0 0 0 0 0 0 0 0 0 0 0 x_1 x_0 0 0 0 0 0 0 |
{1, 2} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_1 x_0 0 0 0 0 | 3
1 {1, 2} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_1 x_0 0 0 |
{1, 2} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_1 x_0 |
2
o15 : Complex
|
i16 : assert all({D1,D2,D3,D4,D5}, isWellDefined)
|