Macaulay2 » Documentation
Packages » ConformalBlocks :: symmetricDivisorM0nbar
next | previous | forward | backward | up | index | toc

symmetricDivisorM0nbar -- create a symmetric divisor on the moduli space of stable pointed genus 0 curves



A symmetric divisor on $\bar{M}_{0,n}$ may be created in either one of two ways. The user may either enter the number of marked points $n$ and a linear polynomial in the standard basis classes $B_i$, or enter $n$ and a list of the coefficients of $D$ in the standard basis. Both usages are demonstrated in the example below.

i1 : D=symmetricDivisorM0nbar(6,{2,3})

o1 = 2*B  + 3*B
        2      3

o1 : S_6-symmetric divisor on M-0-6-bar
i2 : E=symmetricDivisorM0nbar(6,2*B_2+3*B_3)

o2 = 2*B  + 3*B
        2      3

o2 : S_6-symmetric divisor on M-0-6-bar
i3 : D==E

o3 = true

Ways to use symmetricDivisorM0nbar :

For the programmer

The object symmetricDivisorM0nbar is a method function.