i1 : R = ZZ/101[a,b,c]/ideal{a^3+b^3+c^3,a*b*c}
o1 = R
o1 : QuotientRing
|
i2 : K1 = koszulComplexDGA(ideal vars R,Variable=>"Y")
o2 = {Ring => R }
Underlying algebra => R[Y ..Y ]
1 3
Differential => {a, b, c}
o2 : DGAlgebra
|
i3 : K2 = koszulComplexDGA(ideal {b,c},Variable=>"T")
o3 = {Ring => R }
Underlying algebra => R[T ..T ]
1 2
Differential => {b, c}
o3 : DGAlgebra
|
i4 : f = dgAlgebraMap(K2,K1,matrix{{0,T_1,T_2}})
o4 = map (R[T ..T ], R[Y ..Y ], {0, T , T , a, b, c})
1 2 1 3 1 2
o4 : DGAlgebraMap
|
i5 : g = dgAlgebraMap(K1,K2,matrix{{Y_2,Y_3}})
o5 = map (R[Y ..Y ], R[T ..T ], {Y , Y , a, b, c})
1 3 1 2 2 3
o5 : DGAlgebraMap
|
i6 : toComplexMap g
1 1
o6 = 0 : R <--------- R : 0
| 1 |
3 2
1 : R <--------------- R : 1
{1} | 0 0 |
{1} | 1 0 |
{1} | 0 1 |
3 1
2 : R <------------- R : 2
{2} | 0 |
{2} | 0 |
{2} | 1 |
o6 : ChainComplexMap
|
i7 : HHg = HH g
-- used 0.0125668s (cpu); 0.0116331s (thread); 0s (gc)
Finding easy relations :
ZZ
---[a..c]
ZZ 101
o7 = map (---[X ..X ], ----------[X ], {X , 0, 0, 0})
101 1 2 3 1 1
(c, b, a )
ZZ
---[a..c]
ZZ 101
o7 : RingMap ---[X ..X ] <-- ----------[X ]
101 1 2 3 1
(c, b, a )
|