b = isSCM H
This uses the edge ideal notion of sequential Cohen-Macaulayness; a hypergraph is called SCM if and only if its edge ideal is SCM. The algorithm is based on work of Herzog and Hibi, using the Alexander dual. H is SCM if and only if the Alexander dual of the edge ideal of H is componentwise linear.
There is an optional argument called Gins for isSCM. The default value is false, meaning that isSCM takes the Alexander dual of the edge ideal of H and checks in all relevant degrees to see if the ideal in that degree has a linear resolution. In characteristic zero with the reverse-lex order, one can test for componentwise linearity using gins, which may be faster in some cases. This approach is based on work of Aramova-Herzog-Hibi and Conca. We make no attempt to check the characteristic of the field or the monomial order, so use caution when using this method.
|
|
|
|
|
|
The object isSCM is a method function with options.