Macaulay2 » Documentation
Packages » GameTheory :: GameTheory
next | previous | forward | backward | up | index | toc

GameTheory -- a package for computing equilibria in game theory

Description

Game Theory is a package for several equilibrium concepts in game theory. It constructs the algebro-geometric and combinatorial models for Nash, correlated, dependency, and conditional independence equilibria. The latter three notions of equilibria are all generalizations of Nash equilibria. An $n$-player game in normal form is defined by $n$-tensors of format $d_1 \times d_2 \times \cdots \times d_n$, where $d_i$ is the number of pure strategies of player $i$. The entry $\{j_1, j_2, \cdots, j_n\}$ of the $i$-th (payoff) tensor for player $i$ is the payoff when player $1$ chooses strategy $j_1$, player $2$ chooses strategy $j_2$, and so on. One can define a specific game or a random game, e.g., a list with random tensors.

i1 : A = zeroTensor {2,2};
i2 : B = zeroTensor {2,2};
i3 : A#{0,0} = 3;  A#{0,1} = 0;  A#{1,0} = 0;  A#{1,1} = 2;
i7 : B#{0,0} = 2;  B#{0,1} = 0;  B#{1,0} = 0;  B#{1,1} = 3;
i11 : X = {randomTensor {2,2,2}, randomTensor {2,2,2}, randomTensor {2,2,2}}

o11 = {Tensor{...11...}, Tensor{...11...}, Tensor{...11...}}

o11 : List
i12 : randomGame {2,2,2}

o12 = {Tensor{...11...}, Tensor{...11...}, Tensor{...11...}}

o12 : List

The notion of Nash equilibria is one of the central topics in game theory. nashEquilibriumIdeal computes a square system of $d_1 + \cdots + d_n$ polynomials that algebraically model the set of totally mixed Nash equilibria. In the case where the dimension of this ideal is zero (commonly referred to as a generic game), one can use the mixed volume of the Newton polytopes of each polynomial in the system to obtain an upper bound on the number of totally mixed Nash equilibria. The list of these Newton polytopes is provided by deltaList. The mixed volume of these polytopes equals the number of certain block derangements. The method numberTMNE is typically faster than mixedVolume in this case.

i13 : NR = nashEquilibriumRing X;
i14 : I = nashEquilibriumIdeal(NR,X)

               67                  1                 31                
o14 = ideal (- --p      p       - --p      p       - --p      p       +
               18 {1, 0} {2, 0}   20 {1, 1} {2, 0}   20 {1, 0} {2, 1}  
      -----------------------------------------------------------------------
       7                  43                 19                 39           
      --p      p      , - --p      p       - --p      p       + --p      p   
      12 {1, 1} {2, 1}     7 {0, 0} {2, 0}   20 {0, 1} {2, 0}    7 {0, 0} {2,
      -----------------------------------------------------------------------
           13                  35                  1                 17    
         + --p      p      , - --p      p       - --p      p       - --p   
      1}   63 {0, 1} {2, 1}     9 {0, 0} {1, 0}   24 {0, 1} {1, 0}    2 {0,
      -----------------------------------------------------------------------
                  23
        p       - --p      p      , p       + p       - 1, p       + p      
      0} {1, 1}    5 {0, 1} {1, 1}   {0, 0}    {0, 1}       {1, 0}    {1, 1}
      -----------------------------------------------------------------------
      - 1, p       + p       - 1)
            {2, 0}    {2, 1}

o14 : Ideal of NR
i15 : dim I

o15 = 0
i16 : degree I

o16 = 2
i17 : D = deltaList {2,2,2}

o17 = {Polyhedron{...1...}, Polyhedron{...1...}, Polyhedron{...1...}}

o17 : List
i18 : mixedVolume D

o18 = 2

o18 : QQ
i19 : blockDerangements {2,2,2}

o19 = {{set {(2, 0)}, set {(0, 0)}, set {(1, 0)}}, {set {(1, 0)}, set {(2,
      -----------------------------------------------------------------------
      0)}, set {(0, 0)}}}

o19 : List
i20 : numberTMNE {2,2,2}

o20 = 2

The set of correlated equilibria of a game forms a convex polytope inside the (probability) simplex which is the standard simplex of dimension $d_1 \cdots d_n -1$. Thus, the variables are taken from probabilityRing. In particular, the map from nashEquilibriumRing to probabilityRing is the Segre embedding.

i21 : CE1 = correlatedEquilibria {A, B}

o21 = CE1

o21 : Polyhedron
i22 : dim CE1

o22 = 3
i23 : vertices CE1

o23 = | 1 0 2/7 3/8 6/25 |
      | 0 0 3/7 0   9/25 |
      | 0 0 0   1/4 4/25 |
      | 0 1 2/7 3/8 6/25 |

               4       5
o23 : Matrix QQ  <-- QQ
i24 : facets CE1

o24 = (| 0  -1 0  0  |, 0)
       | -3 2  0  0  |
       | 0  0  -1 0  |
       | -2 0  3  0  |
       | 0  2  0  -3 |
       | 0  0  3  -2 |

o24 : Sequence
i25 : CE2 = correlatedEquilibria randomGame{2,2,2}

o25 = CE2

o25 : Polyhedron
i26 : dim CE2

o26 = 7

The algebro-geometric model of dependency equilibria is called Spohn variety. Its defining ideal is given by rank one conditions on Spohn matrices. One can also define Konstanz matrices which is crucial to understand the projection of dependency equilibria to the payoff region.

i27 : PR = probabilityRing {2,2,2};
i28 : X = randomGame {2,2,2};
i29 : spohnMatrices(PR,X)

o29 = {| p_{0, 0, 0}+p_{0, 0, 1}+p_{0, 1, 0}+p_{0, 1, 1} 5/3p_{0, 0,
       | p_{1, 0, 0}+p_{1, 0, 1}+p_{1, 1, 0}+p_{1, 1, 1} 6/5p_{1, 0,
      -----------------------------------------------------------------------
      0}+3p_{0, 0, 1}+8/7p_{0, 1, 0}+6/5p_{0, 1, 1}  |, | p_{0, 0, 0}+p_{0,
      0}+6/7p_{1, 0, 1}+6p_{1, 1, 0}+3/10p_{1, 1, 1} |  | p_{0, 1, 0}+p_{0,
      -----------------------------------------------------------------------
      0, 1}+p_{1, 0, 0}+p_{1, 0, 1}
      1, 1}+p_{1, 1, 0}+p_{1, 1, 1}
      -----------------------------------------------------------------------
      9/4p_{0, 0, 0}+1/3p_{0, 0, 1}+1/2p_{1, 0, 0}+1/3p_{1, 0, 1}  |, | p_{0,
      3/10p_{0, 1, 0}+3/8p_{0, 1, 1}+1/2p_{1, 1, 0}+8/7p_{1, 1, 1} |  | p_{0,
      -----------------------------------------------------------------------
      0, 0}+p_{0, 1, 0}+p_{1, 0, 0}+p_{1, 1, 0} 5/7p_{0, 0,
      0, 1}+p_{0, 1, 1}+p_{1, 0, 1}+p_{1, 1, 1} 3/2p_{0, 0,
      -----------------------------------------------------------------------
      0}+7p_{0, 1, 0}+6/5p_{1, 0, 0}+1/5p_{1, 1, 0}   |}
      1}+5/3p_{0, 1, 1}+3/2p_{1, 0, 1}+5/4p_{1, 1, 1} |

o29 : List
i30 : spohnIdeal(PR,X);

o30 : Ideal of PR
i31 : konstanzMatrix(PR,X)

o31 = | k_0-5/3 k_0-3   k_0-8/7  k_0-6/5 0       0       0       0        |
      | 0       0       0        0       k_0-6/5 k_0-6/7 k_0-6   k_0-3/10 |
      | k_1-9/4 k_1-1/3 0        0       k_1-1/2 k_1-1/3 0       0        |
      | 0       0       k_1-3/10 k_1-3/8 0       0       k_1-1/2 k_1-8/7  |
      | k_2-5/7 0       k_2-7    0       k_2-6/5 0       k_2-1/5 0        |
      | 0       k_2-3/2 0        k_2-5/3 0       k_2-3/2 0       k_2-5/4  |

                         6                 8
o31 : Matrix (PR[k ..k ])  <-- (PR[k ..k ])
                  0   2             0   2

The algebro-geometric model of conditional independence equilibria is obtained by intersecting the Spohn variety with the conditional independence model of a given set of conditional independence statements, followed by the removal of certain components. The set of conditional independence statements can be generated via graphical models.

i32 : G1 = graph ({}, Singletons => {1,2,3});
i33 : G2 = graph ({{1,2}}, Singletons => {3});
i34 : I1 = spohnCI(PR,X,G1)

                                                                      
o34 = ideal (727710p          - 2870478p          + 1936669p         ,
                    {1, 0, 1}           {1, 1, 0}           {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                 
      1188593p          + 9157515p          - 12232731p         ,
              {1, 0, 0}           {1, 1, 0}            {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                    
      437292065p          - 70326711p          - 91417042p         ,
                {0, 1, 1}            {1, 1, 0}            {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                
      24988118p          - 85869p          - 10485198p         ,
               {0, 1, 0}         {1, 1, 0}            {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                             
      22730129187225p          + 9420433731891p          - 24975873351298p   
                     {0, 0, 1}                 {1, 1, 0}                  {1,
      -----------------------------------------------------------------------
                                                                  
           , 21214787241410p          - 34552109032893p          +
      1, 1}                 {0, 0, 0}                  {1, 1, 0}  
      -----------------------------------------------------------------------
                                          2                                  
      22940456357154p         , 140653422p          + 179828669p         p   
                     {1, 1, 1}            {1, 1, 0}             {1, 1, 0} {1,
      -----------------------------------------------------------------------
                        2
            - 366981930p         )
      1, 1}             {1, 1, 1}

o34 : Ideal of PR
i35 : I2 = spohnCI(PR,X,G2)

                                                                            
o35 = ideal (330p          - 2240p          + 126p          + 441p         ,
                 {0, 0, 1}        {0, 1, 1}       {1, 0, 1}       {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                             
      330p          - 2240p          + 126p          + 441p         , p      
          {0, 0, 0}        {0, 1, 0}       {1, 0, 0}       {1, 1, 0}   {1, 0,
      -----------------------------------------------------------------------
                                                                         
        p          - p         p         , p         p          - p      
      1} {1, 1, 0}    {1, 0, 0} {1, 1, 1}   {0, 1, 1} {1, 1, 0}    {0, 1,
      -----------------------------------------------------------------------
                                                                            
        p         , 215560p         p          + 1031760p         p         
      0} {1, 1, 1}         {0, 1, 0} {1, 0, 1}           {0, 1, 1} {1, 0, 1}
      -----------------------------------------------------------------------
                                          2                                
      - 12348p         p          - 56700p          - 2375000p         p   
              {1, 0, 0} {1, 0, 1}         {1, 0, 1}           {0, 1, 0} {1,
      -----------------------------------------------------------------------
                                                                       
            + 1332450p         p          + 71442p         p          -
      1, 1}           {0, 1, 1} {1, 1, 1}         {1, 0, 0} {1, 1, 1}  
      -----------------------------------------------------------------------
                                                                       2     
      269892p         p          + 401310p         p          - 250047p      
             {1, 0, 1} {1, 1, 1}          {1, 1, 0} {1, 1, 1}          {1, 1,
      -----------------------------------------------------------------------
                                                                    
        , 215560p         p          + 1031760p         p          -
      1}         {0, 1, 1} {1, 0, 0}           {0, 1, 1} {1, 0, 1}  
      -----------------------------------------------------------------------
                                        2                                   
      12348p         p          - 56700p          - 2375000p         p      
            {1, 0, 0} {1, 0, 1}         {1, 0, 1}           {0, 1, 0} {1, 1,
      -----------------------------------------------------------------------
                                                                    
         + 1332450p         p          + 71442p         p          -
      1}           {0, 1, 1} {1, 1, 1}         {1, 0, 0} {1, 1, 1}  
      -----------------------------------------------------------------------
                                                                       2     
      269892p         p          + 401310p         p          - 250047p      
             {1, 0, 1} {1, 1, 1}          {1, 1, 0} {1, 1, 1}          {1, 1,
      -----------------------------------------------------------------------
                                                    2          
        , 1161652840p         p          - 66543372p          -
      1}             {0, 1, 0} {1, 0, 0}            {1, 0, 0}  
      -----------------------------------------------------------------------
                                                                      
      26613217440p         p          + 12948012p         p          +
                  {0, 1, 1} {1, 0, 1}            {1, 0, 0} {1, 0, 1}  
      -----------------------------------------------------------------------
                 2                                                          
      1462519800p          - 12798875000p         p          + 385000938p   
                 {1, 0, 1}               {0, 1, 0} {1, 1, 0}             {1,
      -----------------------------------------------------------------------
                                   2                                       
           p          + 2162659590p          + 68441323050p         p      
      0, 0} {1, 1, 0}              {1, 1, 0}               {0, 1, 0} {1, 1,
      -----------------------------------------------------------------------
                                                                             
         - 34369215300p         p          - 3297222936p         p          +
      1}               {0, 1, 1} {1, 1, 1}              {1, 0, 0} {1, 1, 1}  
      -----------------------------------------------------------------------
                                                                        
      6961594248p         p          - 11698893423p         p          +
                 {1, 0, 1} {1, 1, 1}               {1, 1, 0} {1, 1, 1}  
      -----------------------------------------------------------------------
                 2                                                        2  
      6449712318p         , 197728876800p         p          - 4224976000p   
                 {1, 1, 1}               {0, 1, 0} {0, 1, 1}              {0,
      -----------------------------------------------------------------------
                                                                             
            + 38550752520p         p          - 465976476p         p         
      1, 1}               {0, 1, 1} {1, 0, 1}             {1, 0, 0} {1, 0, 1}
      -----------------------------------------------------------------------
                   2                                            
      - 2139687900p          + 48895744380p         p          -
                   {1, 0, 1}               {0, 1, 0} {1, 1, 1}  
      -----------------------------------------------------------------------
                                                                        
      30970790200p         p          - 7285499046p         p          -
                  {0, 1, 1} {1, 1, 1}              {1, 0, 0} {1, 1, 1}  
      -----------------------------------------------------------------------
                                                                         
      17660535204p         p          - 19791034830p         p          +
                  {1, 0, 1} {1, 1, 1}               {1, 1, 0} {1, 1, 1}  
      -----------------------------------------------------------------------
                 2                             2          
      6724509561p         , 249341254595596800p          -
                 {1, 1, 1}                     {0, 1, 0}  
      -----------------------------------------------------------------------
                      2                           2          
      113841978320000p          - 587608451624376p          -
                      {0, 1, 1}                   {1, 0, 0}  
      -----------------------------------------------------------------------
                                                                           
      231645727830554520p         p          + 73986638952996p         p   
                         {0, 1, 1} {1, 0, 1}                  {1, 0, 0} {1,
      -----------------------------------------------------------------------
                                2                                          
            + 12729437966655900p          + 61658804952533880p         p   
      0, 1}                     {1, 0, 1}                     {0, 1, 0} {1,
      -----------------------------------------------------------------------
                                                                       2     
            - 9187203719981196p         p          - 24957009487535580p      
      1, 0}                    {1, 0, 0} {1, 1, 0}                     {1, 1,
      -----------------------------------------------------------------------
                                                                             
         + 497877041974323900p         p          - 301331166584291900p      
      0}                      {0, 1, 0} {1, 1, 1}                      {0, 1,
      -----------------------------------------------------------------------
                                                            
        p          - 38578437577926738p         p          +
      1} {1, 1, 1}                     {1, 0, 0} {1, 1, 1}  
      -----------------------------------------------------------------------
                                                                             
      60390694118826084p         p          - 82557682628561784p         p   
                        {1, 0, 1} {1, 1, 1}                     {1, 1, 0} {1,
      -----------------------------------------------------------------------
                                2
            + 56572267000026519p         )
      1, 1}                     {1, 1, 1}

o35 : Ideal of PR
i36 : J = probabilitySumIdeal(PR)

o36 = ideal(p          + p          + p          + p          + p          +
             {0, 0, 0}    {0, 0, 1}    {0, 1, 0}    {0, 1, 1}    {1, 0, 0}  
      -----------------------------------------------------------------------
      p          + p          + p          - 1)
       {1, 0, 1}    {1, 1, 0}    {1, 1, 1}

o36 : Ideal of PR
i37 : J1 = I1 + J

                                                                      
o37 = ideal (727710p          - 2870478p          + 1936669p         ,
                    {1, 0, 1}           {1, 1, 0}           {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                 
      1188593p          + 9157515p          - 12232731p         ,
              {1, 0, 0}           {1, 1, 0}            {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                    
      437292065p          - 70326711p          - 91417042p         ,
                {0, 1, 1}            {1, 1, 0}            {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                
      24988118p          - 85869p          - 10485198p         ,
               {0, 1, 0}         {1, 1, 0}            {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                             
      22730129187225p          + 9420433731891p          - 24975873351298p   
                     {0, 0, 1}                 {1, 1, 0}                  {1,
      -----------------------------------------------------------------------
                                                                  
           , 21214787241410p          - 34552109032893p          +
      1, 1}                 {0, 0, 0}                  {1, 1, 0}  
      -----------------------------------------------------------------------
                                          2                                  
      22940456357154p         , 140653422p          + 179828669p         p   
                     {1, 1, 1}            {1, 1, 0}             {1, 1, 0} {1,
      -----------------------------------------------------------------------
                        2
            - 366981930p         , p          + p          + p          +
      1, 1}             {1, 1, 1}   {0, 0, 0}    {0, 0, 1}    {0, 1, 0}  
      -----------------------------------------------------------------------
      p          + p          + p          + p          + p          - 1)
       {0, 1, 1}    {1, 0, 0}    {1, 0, 1}    {1, 1, 0}    {1, 1, 1}

o37 : Ideal of PR
i38 : J2 = I1 + J

                                                                      
o38 = ideal (727710p          - 2870478p          + 1936669p         ,
                    {1, 0, 1}           {1, 1, 0}           {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                 
      1188593p          + 9157515p          - 12232731p         ,
              {1, 0, 0}           {1, 1, 0}            {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                    
      437292065p          - 70326711p          - 91417042p         ,
                {0, 1, 1}            {1, 1, 0}            {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                
      24988118p          - 85869p          - 10485198p         ,
               {0, 1, 0}         {1, 1, 0}            {1, 1, 1} 
      -----------------------------------------------------------------------
                                                                             
      22730129187225p          + 9420433731891p          - 24975873351298p   
                     {0, 0, 1}                 {1, 1, 0}                  {1,
      -----------------------------------------------------------------------
                                                                  
           , 21214787241410p          - 34552109032893p          +
      1, 1}                 {0, 0, 0}                  {1, 1, 0}  
      -----------------------------------------------------------------------
                                          2                                  
      22940456357154p         , 140653422p          + 179828669p         p   
                     {1, 1, 1}            {1, 1, 0}             {1, 1, 0} {1,
      -----------------------------------------------------------------------
                        2
            - 366981930p         , p          + p          + p          +
      1, 1}             {1, 1, 1}   {0, 0, 0}    {0, 0, 1}    {0, 1, 0}  
      -----------------------------------------------------------------------
      p          + p          + p          + p          + p          - 1)
       {0, 1, 1}    {1, 0, 0}    {1, 0, 1}    {1, 1, 0}    {1, 1, 1}

o38 : Ideal of PR

Acknowledgement

We thank Ben Hollering<https://sites.google.com/view/benhollering> and Mahrud Sayrafi<https://www-users.cse.umn.edu/~mahrud/> for their support during the Macaulay2 in the Sciences Workshop<https://www.mis.mpg.de/de/events/series/macaulay2-in-the-sciences> where the development of this package began.

Contributors

The following people have generously contributed their time and effort to this project: Luca Sodomaco<https://sites.google.com/view/luca-sodomaco/home>.

References

This package is based on the following papers:

- Nash Equilibria: [H. Abo, I. Portakal, and L. Sodomaco: A vector bundle approach to Nash equilibria] available on arXiv.

- Correlated Equilibria: [M.-C. Brandenburg, B. Hollering, I. Portakal: Combinatorics of Correlated Equilibria] Experimental Mathematics, 2024.

- Dependency Equilibria: [I. Portakal and B. Sturmfels: Geometry of dependency equilibria] published in Rend. Istit. Mat. Univ. Trieste 54 (Art. No. 5), 2022, 13, 2022.

- Conditional Independence Equilibria: [I. Portakal and J. Sendra-Arranz: Game theory of undirected graphical models] Journal of Algebra, Volume 666, 2025.

Caveat

GameTheory uses Polyhedra.m2 for the methods of correlated equilibria and GraphicalModels.m2 for the methods of conditional independence equilibria. Throughout the package, we followed Macaulay2's convention of zero-based indexing. This can be seen e.g., in the methods of nashEquilibriumRing and probabilityRing. In particular, for an $n$-player game, the players are labeled $0, \ldots, n-1$, and if player $i$ has $d_i$ pure strategies, they are labeled $0, \ldots, d_i-1$.

Authors

Version

This documentation describes version 1.0 of GameTheory.

Citation

If you have used this package in your research, please cite it as follows:

@misc{GameTheorySource,
  title = {{GameTheory: computing equilibria in game theory. Version~1.0}},
  author = {Erin Connelly and Vincenzo Galgano and Zhuang He and Lars Kastner and Giacomo Maletto and Elke Neuhaus and Irem Portakal and Hannah Tillmann-Morris and Chenyang Zhao},
  howpublished = {A \emph{Macaulay2} package available at
    \url{https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages}}
}

Exports

  • Types
    • Tensor -- a mutable hash table representing a tensor
  • Functions and commands
    • assemblePlayeriPolynomials -- get all incentive constraint polynomials for a player
    • assemblePolynomial -- compute incentive constraint polynomial for deviation
    • blockDerangements -- see blockDerangements(List) -- compute the block derangements
    • ciIdeal -- the ideal of a list of conditional independence statements
    • correlatedEquilibria -- compute the correlated equilibrium polytope for a game
    • deltaList -- see deltaList(List) -- generate the list of Newton polytopes for a generic game
    • enumerateTensorIndices -- generate index tuples for a tensor with given dimensions
    • getVariableToIndexset -- retrieve a polynomial ring variable by its index tuple
    • indexset -- get the list of index tuples of a tensor
    • intersectWithCImodel -- ideal of the intersection of a given variety with the conditional independence model
    • konstanzMatrix -- construct the Konstanz matrix of a given game
    • mapToMarkovRing -- ring isomorphism from the given probabilityRing to the corresponding markovRing
    • mapToProbabilityRing -- ring isomorphism to the given probabilityRing from the corresponding markovRing
    • nashEquilibriumIdeal -- see nashEquilibriumIdeal(Ring,List) -- make the Nash Equilibrium ideal
    • nashEquilibriumRing -- see nashEquilibriumRing(List) -- define the Nash Equilibrium ring
    • numberTMNE -- see numberTMNE(List) -- compute the maximum number of totally mixed Nash equilibria for a generic game
    • probabilityRing -- ring of probability distributions of a game indexed by ordered multi-indices
    • probabilitySumIdeal -- ideal enforcing that a probability distribution sums to 1
    • randomGame -- construct a game of a given format with arbitrary payoffs
    • randomTensor -- construct a tensor with random entries from a given ring
    • slice -- extract a slice of a tensor
    • spohnCI -- ideal of the Spohn conditional independence (CI) variety
    • spohnIdeal -- compute the ideal of the Spohn variety of a given game
    • spohnMatrices -- compute the list of Spohn matrices of a given game
    • toMarkovRing -- ring of joint probability distributions created with the markovRing function from the GraphicalModels package
    • zeroTensor -- construct a tensor with zero entries from a given ring.
  • Methods
    • assemblePlayeriPolynomials(Ring,Tensor,ZZ) -- see assemblePlayeriPolynomials -- get all incentive constraint polynomials for a player
    • assemblePolynomial(Ring,Tensor,List) -- see assemblePolynomial -- compute incentive constraint polynomial for deviation
    • blockDerangements(List) -- compute the block derangements
    • ciIdeal(Ring,Graph) -- see ciIdeal -- the ideal of a list of conditional independence statements
    • ciIdeal(Ring,Graph,List) -- see ciIdeal -- the ideal of a list of conditional independence statements
    • ciIdeal(Ring,List) -- see ciIdeal -- the ideal of a list of conditional independence statements
    • ciIdeal(Ring,List,List) -- see ciIdeal -- the ideal of a list of conditional independence statements
    • coefficientRing(Tensor) (missing documentation)
    • correlatedEquilibria(List) -- see correlatedEquilibria -- compute the correlated equilibrium polytope for a game
    • deltaList(List) -- generate the list of Newton polytopes for a generic game
    • enumerateTensorIndices(List) -- see enumerateTensorIndices -- generate index tuples for a tensor with given dimensions
    • enumerateTensorIndices(ZZ) -- see enumerateTensorIndices -- generate index tuples for a tensor with given dimensions
    • format(Tensor) (missing documentation)
    • getVariableToIndexset(Ring,List) -- see getVariableToIndexset -- retrieve a polynomial ring variable by its index tuple
    • indexset(Tensor) -- see indexset -- get the list of index tuples of a tensor
    • intersectWithCImodel(Ideal,Graph) -- see intersectWithCImodel -- ideal of the intersection of a given variety with the conditional independence model
    • intersectWithCImodel(Ideal,Graph,List) -- see intersectWithCImodel -- ideal of the intersection of a given variety with the conditional independence model
    • intersectWithCImodel(Ideal,List) -- see intersectWithCImodel -- ideal of the intersection of a given variety with the conditional independence model
    • intersectWithCImodel(Ideal,List,List) -- see intersectWithCImodel -- ideal of the intersection of a given variety with the conditional independence model
    • konstanzMatrix(Ring,List) (missing documentation)
    • mapToMarkovRing(Ring) -- see mapToMarkovRing -- ring isomorphism from the given probabilityRing to the corresponding markovRing
    • mapToProbabilityRing(Ring) -- see mapToProbabilityRing -- ring isomorphism to the given probabilityRing from the corresponding markovRing
    • nashEquilibriumIdeal(Ring,List) -- make the Nash Equilibrium ideal
    • nashEquilibriumRing(List) -- define the Nash Equilibrium ring
    • numberTMNE(List) -- compute the maximum number of totally mixed Nash equilibria for a generic game
    • probabilityRing(List) -- see probabilityRing -- ring of probability distributions of a game indexed by ordered multi-indices
    • probabilitySumIdeal(Ring) -- see probabilitySumIdeal -- ideal enforcing that a probability distribution sums to 1
    • randomGame(List) (missing documentation)
    • randomTensor(List) -- see randomTensor -- construct a tensor with random entries from a given ring
    • randomTensor(Ring,List) -- see randomTensor -- construct a tensor with random entries from a given ring
    • slice(Tensor,List,List) -- see slice -- extract a slice of a tensor
    • spohnCI(Ring,List,Graph) -- see spohnCI -- ideal of the Spohn conditional independence (CI) variety
    • spohnCI(Ring,List,Graph,List) -- see spohnCI -- ideal of the Spohn conditional independence (CI) variety
    • spohnCI(Ring,List,List) -- see spohnCI -- ideal of the Spohn conditional independence (CI) variety
    • spohnCI(Ring,List,List,List) -- see spohnCI -- ideal of the Spohn conditional independence (CI) variety
    • spohnIdeal(Ring,List) (missing documentation)
    • spohnMatrices(Ring,List) (missing documentation)
    • toMarkovRing(Ring) -- see toMarkovRing -- ring of joint probability distributions created with the markovRing function from the GraphicalModels package
    • zeroTensor(List) -- see zeroTensor -- construct a tensor with zero entries from a given ring.
    • zeroTensor(Ring,List) -- see zeroTensor -- construct a tensor with zero entries from a given ring.
  • Symbols
    • KonstanzVariableName (missing documentation)
    • ProbabilityVariableName (missing documentation)

For the programmer

The object GameTheory is a package, defined in GameTheory.m2.


The source of this document is in GameTheory.m2:914:0.