i4 : R = QQ[x0,x1,x2,x3,x4,x5]
o4 = R
o4 : PolynomialRing
|
i5 : M = matrix {{x1*x3*x4, x0*x3*x4, x1*x2*x4, x0*x2*x3, x0*x1*x2, x2*x4*x5, x0*x4*x5, x2*x3*x5, x1*x3*x5, x0*x1*x5}} --Stanley-Reisner ideal of RP^2
o5 = | x1x3x4 x0x3x4 x1x2x4 x0x2x3 x0x1x2 x2x4x5 x0x4x5 x2x3x5 x1x3x5 x0x1x5
------------------------------------------------------------------------
|
1 10
o5 : Matrix R <-- R
|
i6 : I=ideal flatten entries M
o6 = ideal (x1*x3*x4, x0*x3*x4, x1*x2*x4, x0*x2*x3, x0*x1*x2, x2*x4*x5,
------------------------------------------------------------------------
x0*x4*x5, x2*x3*x5, x1*x3*x5, x0*x1*x5)
o6 : Ideal of R
|
i7 : J=(ideal{x0,x1,x2})^3
3 2 2 2 2 3 2 2
o7 = ideal (x0 , x0 x1, x0 x2, x0*x1 , x0*x1*x2, x0*x2 , x1 , x1 x2, x1*x2 ,
------------------------------------------------------------------------
3
x2 )
o7 : Ideal of R
|
i8 : assert(gin(I)==J)
|
Example 1.10 from Conca, De Negri, Gorla 'Cartwright-Sturmfels ideals associated to graphs and linear spaces'.
i9 : R = QQ[x_1..x_3,y_1..y_3, Degrees=>{{1,0},{1,0},{1,0},{0,1},{0,1},{0,1}}];
|
i10 : I = ideal(x_1*y_1,x_2*y_2,x_3*y_2,x_2*y_3,x_3*y_3);
o10 : Ideal of R
|
i11 : gin(I)
2 2 3 2
o11 = ideal (x , x x , x , x x , x x , x , x y )
1 1 2 2 1 3 2 3 3 3 1
o11 : Ideal of R
|
i12 : gin(I, Multigraded => true)
2
o12 = ideal (x y , x y , x y , x y , x y , x y , x x y )
1 1 2 1 3 1 1 2 2 2 1 3 1 2 3
o12 : Ideal of R
|