next | previous | forward | backward | up | index | toc

# describe(LieAlgebra) -- real description

## Description

The function displays a list of relevant information about the object in question.

## Synopsis

• Usage:
describe(L)
• Inputs:

## Synopsis

• Usage:
describe(E)
• Inputs:

## Synopsis

• Usage:
describe(f)
• Inputs:

## Synopsis

• Usage:
describe(d)
• Inputs:

## Synopsis

• Usage:
describe(V)
• Inputs:
• V, an instance of the type VectorSpace, an instance of type VectorSpace
 i1 : L = lieAlgebra({a,b,c},Weights=>{{1,0},{2,1},{3,2}}, Signs=>{1,1,1},LastWeightHomological=>true) o1 = L o1 : LieAlgebra i2 : D= differentialLieAlgebra({0_L,a a,a b}) o2 = D o2 : LieAlgebra i3 : I=lieIdeal{b b+4 a c} o3 = I o3 : FGLieIdeal i4 : Q=D/I o4 = Q o4 : LieAlgebra i5 : describe Q o5 = generators => {a, b, c} Weights => {{1, 0}, {2, 1}, {3, 2}} Signs => {1, 1, 1} ideal => { - (a a a), (b b) + 4 (a c), (a a b) + (a a b) - (b a a) - 4 (a a b), (a a b) + (a a b) - (b a a) - 4 (a a b), (a a a a) + (a a a a) - (a a a a) - (a a a a) - 4 (a a a a)} ambient => L diff => {0, (a a), (a b)} Field => QQ computedDegree => 0 i6 : describe I o6 = generators => {(b b) + 4 (a c), (a a b) + (a a b) - (b a a) - 4 (a a b)} lieAlgebra => D i7 : describe map(Q,D) o7 = a => a b => b c => c source => D target => Q i8 : describe differential D o8 = a => 0 b => (a a) c => (a b) map => id_D sign => 1 weight => {0, -1} source => D target => D i9 : describe extAlgebra(5,Q) o9 = generators => {ext_0, ext_1, ext_2, ext_3} Weights => {{1, 1}, {2, 2}, {3, 3}, {4, 4}} Signs => {0, 0, 0, 0} lieAlgebra => Q Field => QQ computedDegree => 5

## Ways to use this method:

• "describe(ExtAlgebra)"
• describe(LieAlgebra) -- real description
• "describe(LieAlgebraMap)"
• "describe(LieDerivation)"
• "describe(VectorSpace)"