The function displays a list of relevant information about the object in question.
i1 : L = lieAlgebra({a,b,c},Weights=>{{1,0},{2,1},{3,2}},
Signs=>{1,1,1},LastWeightHomological=>true)
o1 = L
o1 : LieAlgebra
|
i2 : D= differentialLieAlgebra({0_L,a a,a b})
o2 = D
o2 : LieAlgebra
|
i3 : I=lieIdeal{b b+4 a c}
o3 = I
o3 : FGLieIdeal
|
i4 : Q=D/I
o4 = Q
o4 : LieAlgebra
|
i5 : describe Q
o5 = generators => {a, b, c}
Weights => {{1, 0}, {2, 1}, {3, 2}}
Signs => {1, 1, 1}
ideal => { - (a a a), (b b) + 4 (a c), (a a b) + (a a b) - (b a a) - 4 (a a b), (a a b) + (a a b) - (b a a) - 4 (a a b), (a a a a) + (a a a a) - (a a a a) - (a a a a) - 4 (a a a a)}
ambient => L
diff => {0, (a a), (a b)}
Field => QQ
computedDegree => 0
|
i6 : describe I
o6 = generators => {(b b) + 4 (a c), (a a b) + (a a b) - (b a a) - 4 (a a b)}
lieAlgebra => D
|
i7 : describe map(Q,D)
o7 = a => a
b => b
c => c
source => D
target => Q
|
i8 : describe differential D
o8 = a => 0
b => (a a)
c => (a b)
map => id_D
sign => 1
weight => {0, -1}
source => D
target => D
|
i9 : describe extAlgebra(5,Q)
o9 = generators => {ext_0, ext_1, ext_2, ext_3}
Weights => {{1, 1}, {2, 2}, {3, 3}, {4, 4}}
Signs => {0, 0, 0, 0}
lieAlgebra => Q
Field => QQ
computedDegree => 5
|