If $S$ is an instance of LieIdeal, then $I$ is of type LieIdeal. If $S$ is an instance of LieSubAlgebra but not of LieIdeal, then $I$ is of type LieSubAlgebra. Otherwise, $I$ is of type LieSubSpace.
i1 : F=lieAlgebra{a,b,c}
o1 = F
o1 : LieAlgebra
|
i2 : I=lieIdeal{b c - a c}
o2 = I
o2 : FGLieIdeal
|
i3 : Q=F/I
o3 = Q
o3 : LieAlgebra
|
i4 : f=map(Q,F)
o4 = f
o4 : LieAlgebraMap
|
i5 : J=lieIdeal{a b}
o5 = J
o5 : FGLieIdeal
|
i6 : K=inverse(f,J)
o6 = K
o6 : LieIdeal
|
i7 : dims(1,6,F/K)
o7 = {3, 1, 2, 3, 6, 9}
o7 : List
|
i8 : dims(1,6,Q/J)
o8 = {3, 1, 2, 3, 6, 9}
o8 : List
|