i1 : R = gaussianRing graph({{a,b},{b,c},{c,d},{a,d}})
o1 = R
o1 : PolynomialRing
|
i3 : undirectedEdgesMatrix R
o3 = | k k 0 k |
| a,a a,b a,d |
| |
| k k k 0 |
| a,b b,b b,c |
| |
| 0 k k k |
| b,c c,c c,d |
| |
| k 0 k k |
| a,d c,d d,d |
4 4
o3 : Matrix R <-- R
|
i4 : gens R
o4 = {k , k , k , k , k , k , k , k , s , s , s , s ,
a,a b,b c,c d,d a,b a,d b,c c,d a,a a,b a,c a,d
------------------------------------------------------------------------
s , s , s , s , s , s }
b,b b,c b,d c,c c,d d,d
o4 : List
|
i5 : Rnew = gaussianRing( graph({{a,b},{b,c},{c,d},{a,d}}), kVariableName => kappa)
o5 = Rnew
o5 : PolynomialRing
|
i6 : gens Rnew
o6 = {kappa , kappa , kappa , kappa , kappa , kappa , kappa ,
a,a b,b c,c d,d a,b a,d b,c
------------------------------------------------------------------------
kappa , s , s , s , s , s , s , s , s , s , s }
c,d a,a a,b a,c a,d b,b b,c b,d c,c c,d d,d
o6 : List
|