i6 : keys H
o6 = {(3, 4), (3, 5), (4, 6), (2, 3)}
o6 : List
|
i7 : H#(2,3)
o7 = {3} | -t_8-t_20t_13 t_7t_20-t_14t_20+t_20t_13t_19
{3} | -t_7+t_14-t_13t_19 -t_8-t_20t_13+t_7t_19-t_14t_19+t_13t_19^2
------------------------------------------------------------------------
-t_2-t_14^2+t_20t_13^2 -t_8t_14+t_1t_20+t_7t_20t_13 |
-t_1-2t_14t_13+t_13^2t_19 -t_2-t_7t_14-t_8t_13+t_1t_19+t_7t_13t_19 |
2 4
o7 : Matrix (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]) <-- (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ])
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31 6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i8 : H#(3,4)
o8 = {4} | -t_20
{4} | -1
{4} | t_8+t_20t_13-t_7t_19+t_14t_19-t_13t_19^2
{4} | -t_7+t_14-t_13t_19
{4} | 0
------------------------------------------------------------------------
-t_8 |
t_13 |
t_2+t_7t_14+t_8t_13-t_1t_19-t_7t_13t_19 |
-t_1-2t_14t_13+t_13^2t_19 |
t_7-t_14+t_13t_19 |
5 2
o8 : Matrix (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]) <-- (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ])
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31 6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i9 : H#(3,5)
o9 = {5} | -1 t_13 -t_14 |
1 3
o9 : Matrix (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]) <-- (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ])
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31 6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i10 : H#(4,6)
o10 = {6} | -1 |
1 1
o10 : Matrix (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]) <-- (kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ])
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31 6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i11 : J = trim(minors(1, H#(2,3)) + groebnerStratum F);
o11 : Ideal of kk[t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t , t ]
6 12 5 30 18 4 24 36 11 2 29 3 10 17 1 23 28 35 8 16 9 22 26 34 7 14 27 15 20 25 32 13 21 33 19 31
|
i12 : compsJ = decompose J;
|
i13 : #compsJ
o13 = 2
|
i14 : pt1 = randomPointOnRationalVariety compsJ_0
o14 = | -6 48 44 -23 -2 -11 -35 -26 27 -43 48 27 15 -22 25 -16 34 -29 46 -20
-----------------------------------------------------------------------
40 21 -30 -38 -19 -8 -36 39 19 -29 -16 -29 -10 19 24 -24 |
1 36
o14 : Matrix kk <-- kk
|
i15 : pt2 = randomPointOnRationalVariety compsJ_1
o15 = | -48 -46 16 17 -1 -43 15 -1 12 -18 -6 -28 14 -28 -9 32 -22 -39 6 -47
-----------------------------------------------------------------------
28 -37 -47 38 -16 -15 34 27 -13 -43 22 16 0 -18 19 2 |
1 36
o15 : Matrix kk <-- kk
|
i16 : F1 = sub(F, (vars S)|pt1)
2 2 2
o16 = ideal (a + 25b*c - 43c + 27a*d - 11b*d + 44c*d - 6d , a*b - 19b*c +
-----------------------------------------------------------------------
2 2 2
46c + 40a*d + 15b*d + 27c*d + 48d , a*c - 29b*c - 8c + 39a*d - 20b*d
-----------------------------------------------------------------------
2 2 2 2 2
- 22c*d - 2d , b + 24b*c + 19c - 10a*d + 21b*d - 16c*d - 35d , b*c -
-----------------------------------------------------------------------
2 2 2 2 3 3 2
29b*c*d - 30c d - 36a*d + 34b*d + 48c*d - 23d , c - 24b*c*d - 16c d
-----------------------------------------------------------------------
2 2 2 3
+ 19a*d - 38b*d - 29c*d - 26d )
o16 : Ideal of S
|
i17 : betti res F1
0 1 2 3
o17 = total: 1 6 8 3
0: 1 . . .
1: . 4 4 1
2: . 2 4 2
o17 : BettiTally
|
i18 : F2 = sub(F, (vars S)|pt2)
2 2 2
o18 = ideal (a - 9b*c - 18c - 28a*d - 43b*d + 16c*d - 48d , a*b - 16b*c +
-----------------------------------------------------------------------
2 2 2
6c + 28a*d + 14b*d + 12c*d - 46d , a*c + 16b*c - 15c + 27a*d - 47b*d
-----------------------------------------------------------------------
2 2 2 2 2
- 28c*d - d , b + 19b*c - 13c - 37b*d + 32c*d + 15d , b*c - 43b*c*d
-----------------------------------------------------------------------
2 2 2 2 3 3 2 2
- 47c d + 34a*d - 22b*d - 6c*d + 17d , c + 2b*c*d + 22c d - 18a*d
-----------------------------------------------------------------------
2 2 3
+ 38b*d - 39c*d - d )
o18 : Ideal of S
|
i19 : betti res F2
0 1 2 3
o19 = total: 1 6 8 3
0: 1 . . .
1: . 4 4 1
2: . 2 4 2
o19 : BettiTally
|