integralClosure(R, Keep=>L)
Consider the cuspidal cubic, and three different possibilities for Keep.
i1 : R = QQ[x,y]/ideal(x^3-y^2);
i2 : R' = integralClosure(R, Variable => symbol t) o2 = R' o2 : QuotientRing
i3 : trim ideal R' 2 2 o3 = ideal (t y - x , t x - y, t - x) 0,0 0,0 0,0 o3 : Ideal of QQ[t , x..y] 0,0
i4 : R = QQ[x,y]/ideal(x^3-y^2);
i5 : R' = integralClosure(R, Variable => symbol t, Keep => {x}) o5 = R' o5 : QuotientRing
i6 : trim ideal R' 2 o6 = ideal(t - x) 0,0 o6 : Ideal of QQ[t , x] 0,0
i7 : R = QQ[x,y]/ideal(x^3-y^2);
i8 : integralClosure(R, Variable => symbol t, Keep => {}) o8 = QQ[t ] 0,0 o8 : PolynomialRing