h = carpetBettiTables(a,b,e)
We compute the equation and nonminimal resolution F of the degenerate K3 of type (a,b,e) where $a \ge b$ over a large finite prime field, lift the complex to the integers, which is possible if the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
|
|
|
|
|
|
Already for fairly small values of (e_1,e_2) the result might be incorrect, because the lift to characteristic zero fails due to high powers of e_1 and e_2 in the non-minimal resolution. It would be easy to alter the program to catch these mistakes.
|
|
|
Already for (e_1,e_2) fairly small, the algorithm might give wrong answers since the lift to characteristic zero might be incorrect. A correction is easy to implement as soon res(.,FastNonminimal=>true) allows QQ (or ZZ) as coefficient ring. Another possibility would be to use the Chinese remainder for lifting to ZZ.
The object degenerateK3BettiTables is a method function.