i1 : R=QQ[x_0..x_4];
|
i2 : I=monomialIdeal(x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_0);
o2 : MonomialIdeal of R
|
i3 : betti res I
0 1 2 3
o3 = total: 1 5 5 1
0: 1 . . .
1: . 5 5 .
2: . . . 1
o3 : BettiTally
|
i4 : D=simplicialComplex I
o4 = simplicialComplex | x_2x_4 x_1x_4 x_1x_3 x_0x_3 x_0x_2 |
o4 : SimplicialComplex
|
i5 : fc=facets(D) / face
o5 = {x x , x x , x x , x x , x x }
2 4 1 4 1 3 0 3 0 2
o5 : List
|
i6 : S=QQ[x_5]
o6 = S
o6 : PolynomialRing
|
i7 : D5=stellarSubdivision(D,fc#0,S)
o7 = simplicialComplex | x_4x_5 x_2x_5 x_1x_4 x_1x_3 x_0x_3 x_0x_2 |
o7 : SimplicialComplex
|
i8 : I5=ideal D5
o8 = ideal (x x , x x , x x , x x , x x , x x , x x , x x , x x )
0 1 1 2 2 3 0 4 2 4 3 4 0 5 1 5 3 5
o8 : Ideal of QQ[x ..x ]
0 5
|
i9 : betti res I5
0 1 2 3 4
o9 = total: 1 9 16 9 1
0: 1 . . . .
1: . 9 16 9 .
2: . . . . 1
o9 : BettiTally
|
i10 : R=QQ[x_1..x_6]
o10 = R
o10 : PolynomialRing
|
i11 : I=monomialIdeal product gens R
o11 = monomialIdeal(x x x x x x )
1 2 3 4 5 6
o11 : MonomialIdeal of R
|
i12 : D=simplicialComplex I
o12 = simplicialComplex | x_2x_3x_4x_5x_6 x_1x_3x_4x_5x_6 x_1x_2x_4x_5x_6 x_1x_2x_3x_5x_6 x_1x_2x_3x_4x_6 x_1x_2x_3x_4x_5 |
o12 : SimplicialComplex
|
i13 : S=QQ[x_7]
o13 = S
o13 : PolynomialRing
|
i14 : Dsigma=stellarSubdivision(D,face {x_1,x_2,x_3},S)
o14 = simplicialComplex | x_2x_3x_5x_6x_7 x_1x_3x_5x_6x_7 x_1x_2x_5x_6x_7 x_2x_3x_4x_6x_7 x_1x_3x_4x_6x_7 x_1x_2x_4x_6x_7 x_2x_3x_4x_5x_7 x_1x_3x_4x_5x_7 x_1x_2x_4x_5x_7 x_2x_3x_4x_5x_6 x_1x_3x_4x_5x_6 x_1x_2x_4x_5x_6 |
o14 : SimplicialComplex
|
i15 : betti res ideal Dsigma
0 1 2
o15 = total: 1 2 1
0: 1 . .
1: . . .
2: . 1 .
3: . 1 .
4: . . .
5: . . 1
o15 : BettiTally
|