Description
This function is provided by the package
LLLBases.
The first n-1 columns of the matrix z form a basis of the kernel of the n integers of the list s, and the dot product of the last column of z and s is the gcd g.
The method used is described in the paper:
Havas, Majewski, Matthews,
Extended GCD and Hermite Normal Form Algorithms via Lattice Basis Reduction, Experimental Mathematics 7:2 p. 125 (1998).
For an example,
i1 : s = apply(5,i->372*(random 1000000))
o1 = {306370272, 229247604, 135272220, 220821804, 229345440}
o1 : List
|
i2 : (g,z) = gcdLLL s
o2 = (372, | 1 -2 11 48 -20 |)
| -5 -24 -2 -19 7 |
| -12 15 -15 -7 7 |
| 7 5 -31 0 11 |
| 4 13 26 -41 5 |
o2 : Sequence
|
i3 : matrix{s} * z
o3 = | 0 0 0 0 372 |
1 5
o3 : Matrix ZZ <-- ZZ
|