i1 : A = QQ[u,v,x,y,z];
i2 : I = ideal "x-uv,y-uv2,z-u2" 2 2 o2 = ideal (- u*v + x, - u*v + y, - u + z) o2 : Ideal of A
i3 : eliminate(I,{u,v}) 4 2 o3 = ideal(x - y z) o3 : Ideal of A
Alternatively, we could take the coimage of the ring homomorphism g corresponding to f.
i4 : g = map(QQ[u,v],QQ[x,y,z],{x => u*v, y => u*v^2, z => u^2}) 2 2 o4 = map (QQ[u..v], QQ[x..z], {u*v, u*v , u }) o4 : RingMap QQ[u..v] <-- QQ[x..z]
i5 : coimage g QQ[x..z] o5 = -------- 4 2 x - y z o5 : QuotientRing