A common method of creating a submodule of A^n in Macaulay2 is to take the image of a matrix. This will be a submodule generated by the columns of the matrix.
i1 : A = QQ[x,y,z];
i2 : f = matrix{{x*y-1,y^4},{z^2+3,x^3},{x*y*z,z^2}}
o2 = | xy-1 y4 |
| z2+3 x3 |
| xyz z2 |
3 2
o2 : Matrix A <-- A
i3 : M = image f
o3 = image | xy-1 y4 |
| z2+3 x3 |
| xyz z2 |
3
o3 : A-module, submodule of A
i4 : numgens M
o4 = 2
i5 : ambient M
3
o5 = A
o5 : A-module, free
A submodule can easily be moved to quotient rings.