i2 : M = cokernel matrix(A, {{1,2,3},{4,5,6},{7,8,9}})
o2 = cokernel | 1 2 3 |
| 4 5 6 |
| 7 8 9 |
3
o2 : A-module, quotient of A
|
i3 : N = cokernel matrix{{x,y},{z,0}}
o3 = cokernel | x y |
| z 0 |
2
o3 : A-module, quotient of A
|
i4 : H = Hom(M,N)
o4 = subquotient (| 1 0 |, | y x 0 0 0 0 |)
| 0 1 | | 0 z 0 0 0 0 |
| -2 0 | | 0 0 y x 0 0 |
| 0 -2 | | 0 0 0 z 0 0 |
| 1 0 | | 0 0 0 0 y x |
| 0 1 | | 0 0 0 0 0 z |
6
o4 : A-module, subquotient of A
|