codim I
When R is equidimensional, this quantity is the codimension of the ideal I.
i1 : R = ZZ/101[a..e];
i2 : I = monomialCurveIdeal(R,{2,3,5,7}) 2 2 2 3 3 2 o2 = ideal (d - c*e, b*d - a*e, b*c - a*d, c d - b e, c - a*b*e, b - a*c ) o2 : Ideal of R
i3 : J = ideal presentation singularLocus(R/I); o3 : Ideal of R
i4 : codim J o4 = 4
i5 : radical J o5 = ideal (d, c, b, a*e) o5 : Ideal of R
i6 : R = QQ[x,y]/(ideal(x,y) * ideal(x-1)) o6 = R o6 : QuotientRing
i7 : codim ideal(x,y) o7 = 1