Macaulay2 » Documentation
Packages » Macaulay2Doc » analytic functions » erfc
next | previous | forward | backward | up | index | toc

erfc -- complementary error function

Description

The complementary error function \(\operatorname{erfc} x = \frac{2}{\sqrt\pi}\int_x^\infty e^{-t^2}\,dt\).

i1 : erfc 2

o1 = .004677734981047266

o1 : RR (of precision 53)

See also

Ways to use erfc:

  • erfc(CC)
  • erfc(RR)
  • erfc(RRi)

For the programmer

The object erfc is a method function.


The source of this document is in Macaulay2Doc/functions/erf-doc.m2:50:0.