Macaulay2 » Documentation
Packages » Macaulay2Doc » modules » exterior power of a module
next | previous | forward | backward | up | index | toc

exterior power of a module

The k-th exterior power of a module M is the k-fold tensor product of M together with the equivalence relation:$m_1 \otimes m_2 \otimes \cdots \otimes m_k = 0$ if $m_i = m_j$ for $i != j$If M is a free R-module of rank n, then the k-th exterior power of M is a free R-module of rank binomial(n,k). Macaulay2 computes the k-th exterior power of a module M with the command exteriorPower.
i1 : R = ZZ/2[x,y]

o1 = R

o1 : PolynomialRing
i2 : exteriorPower(3,R^6)

      20
o2 = R

o2 : R-module, free
i3 : binomial(6,3)

o3 = 20
Macaulay2 can compute exterior powers of modules that are not free as well.
i4 : exteriorPower(2,R^1)

o4 = 0

o4 : R-module
i5 : I = module ideal (x,y)

o5 = image | x y |

                             1
o5 : R-module, submodule of R
i6 : exteriorPower(2,I)

o6 = cokernel {2} | x y |

                            1
o6 : R-module, quotient of R

See also


The source of this document is in Macaulay2Doc/ov_modules.m2:684:0.