Macaulay2 » Documentation
Packages » Macaulay2Doc » The Macaulay2 language » Type » Ring » flattenRing » flattenRing(...,CoefficientRing=>...)
next | previous | forward | backward | up | index | toc

flattenRing(...,CoefficientRing=>...) -- specify the coefficient ring of the flattened ring

Description

Use this option to change the default behavior of flattenRing, by setting the option to the desired coefficientRing of the output ring.

i1 : k = toField (QQ[x]/(x^2+x+1));
i2 : R = k[y]/(x-y+2);
i3 : (S, f) = flattenRing(R); describe S

         k[y]
o4 = -----------
     - y + x + 2
i5 : (S2, f2) = flattenRing(R, CoefficientRing => QQ); describe S2

              QQ[y, x]
o6 = -------------------------
       2
     (x  + x + 1, - y + x + 2)

See flattenRing documentation for more examples and details.

See also

Functions with optional argument named CoefficientRing:

  • flattenRing(...,CoefficientRing=>...) -- specify the coefficient ring of the flattened ring
  • generators(...,CoefficientRing=>...) -- see generators(Ring) -- the list of generators of a ring
  • Grassmannian(...,CoefficientRing=>...) -- see Grassmannian -- compute the ideal of the Grassmannian of linear subspaces of a vector space
  • Schubert(...,CoefficientRing=>...) -- see Schubert -- compute the Plücker ideal of a Schubert variety

Further information

  • Default value: null
  • Function: flattenRing -- write a ring as a (quotient of a) polynomial ring
  • Option key: CoefficientRing -- an optional argument

The source of this document is in Macaulay2Doc/functions/flattenRing-doc.m2:211:0.