an ideal, which is generated by the monomials in I
Description
i1 : R = QQ[x,y,z];
i2 : I = monomialIdeal(x*y^2, x^2*z, y^2*z)
2 2 2
o2 = monomialIdeal (x*y , x z, y z)
o2 : MonomialIdeal of R
i3 : ideal I
2 2 2
o3 = ideal (x*y , x z, y z)
o3 : Ideal of R
Most operations between ideals and monomial ideals automatically perform the necessary conversions, so one rarely needs to apply the function ideal to a monomial ideal.
i4 : I * ideal I
2 4 3 2 4 3 2 4 2 2 2 2 4 2 2 2 4 2
o4 = ideal (x y , x y z, x*y z, x y z, x z , x y z , x*y z, x y z , y z )
o4 : Ideal of R
i5 : I + ideal(x*y+y*z)
2 2 2
o5 = ideal (x*y , x z, y z, x*y + y*z)
o5 : Ideal of R