Macaulay2 » Documentation
Packages » Macaulay2Doc » elementary arithmetic » lcm
next | previous | forward | backward | up | index | toc

lcm -- least common multiple

Description

i1 : lcm(-6,15,14)

o1 = 210
i2 : lcm(-6/7,15,14)

o2 = 210

o2 : QQ
i3 : R = QQ[a..d];
i4 : lcm(a^2-d^2,(a-d)*(b+c))

      2     2       2      2
o4 = a b + a c - b*d  - c*d

o4 : R
i5 : factor oo

o5 = (b + c)(a - d)(a + d)

o5 : Expression of class Product

See also

Ways to use lcm:

  • lcm()
  • lcm(List)
  • lcm(QQ)
  • lcm(QQ,QQ)
  • lcm(QQ,ZZ)
  • lcm(RingElement)
  • lcm(RingElement,RingElement)
  • lcm(RingElement,ZZ)
  • lcm(Sequence)
  • lcm(ZZ)
  • lcm(ZZ,QQ)
  • lcm(ZZ,RingElement)
  • lcm(ZZ,ZZ)
  • lcm(MonomialIdeal) -- least common multiple of all minimal generators

For the programmer

The object lcm is an associative binary method function.


The source of this document is in Macaulay2Doc/operators.m2:176:0.