Macaulay2 » Documentation
Packages » Macaulay2Doc » ideals » Ideal » leadTerm(Ideal)
next | previous | forward | backward | up | index | toc

leadTerm(Ideal) -- get the ideal of greatest terms

Description

Compute a Gröbner basis and return the ideal generated by the lead terms of the Gröbner basis elements.
i1 : R = QQ[a..d];
i2 : I = ideal(a*b-c*d, a*c-b*d)

o2 = ideal (a*b - c*d, a*c - b*d)

o2 : Ideal of R
i3 : leadTerm I

                       2
o3 = ideal (a*c, a*b, b d)

o3 : Ideal of R
i4 : R = ZZ[a..d][x,y,z];
i5 : I = ideal(a*x-b*y, x^3, y^3, z^3)

                        3   3   3
o5 = ideal (a*x - b*y, x , y , z )

o5 : Ideal of R
i6 : leadTerm I

                  3   3   2   2     2    3
o6 = ideal (a*x, z , y , b x*y , b*x y, x )

o6 : Ideal of R

Ways to use this method:


The source of this document is in Macaulay2Doc/doc7.m2:74:0.