next | previous | forward | backward | up | index | toc

# obtaining the monomial order of a ring

The monomial order of a ring is stored as an option.
 i1 : R = QQ[x_1 .. x_10, MonomialOrder=>{4,6}]; i2 : options R o2 = OptionTable{Constants => false } 1 DegreeGroup => ZZ DegreeLift => null DegreeMap => null DegreeRank => 1 Degrees => {{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}} Global => true Heft => {1} Inverses => false Join => null Local => false MonomialOrder => {MonomialSize => 32 } {GRevLex => {1, 1, 1, 1} } {GRevLex => {1, 1, 1, 1, 1, 1}} {Position => Up } SkewCommutative => {} Variables => {x , x , x , x , x , x , x , x , x , x } 1 2 3 4 5 6 7 8 9 10 WeylAlgebra => {} o2 : OptionTable i3 : (options R).MonomialOrder o3 = {MonomialSize => 32 } {GRevLex => {1, 1, 1, 1} } {GRevLex => {1, 1, 1, 1, 1, 1}} {Position => Up } o3 : VerticalList i4 : S = QQ[a..d]; i5 : (options S).MonomialOrder o5 = {MonomialSize => 32 } {GRevLex => {1, 1, 1, 1}} {Position => Up } o5 : VerticalList